
Vector Packet Processor
Documentation

Release 0.1

John DeNisco

Jul 19, 2018

Contents

1 Overview 3
1.1 What is VPP? . 3
1.2 Features . 5
1.3 Performance . 10
1.4 Architectures and Operating Systems . 12

2 Getting Started Guides 13
2.1 Users . 13
2.2 Developers . 71

3 Use Cases 97
3.1 FD.io VPP with Containers . 97
3.2 FD.io VPP with Virtual Machines . 104
3.3 Using VPP as a Home Gateway . 112
3.4 vSwitch/vRouter . 116

4 Troubleshooting 117
4.1 CPU Load/Usage . 117

5 User Guides 121
5.1 Progressive VPP Tutorial . 121
5.2 API User Guides . 145

6 Events 147
6.1 Conferences . 147
6.2 Summits . 149
6.3 Meetings . 159
6.4 Calls . 161
6.5 Fd.io Training Event . 162

7 Reference 169
7.1 Command Line Reference . 169
7.2 VM’s with Vagrant . 180

i

ii

Vector Packet Processor Documentation, Release 0.1

This is beta VPP Documentation it is not meant to be complete or accurate yet!!!!

FD.io Vector Packet Processing (VPP) is a fast, scalable and multi-platform network stack.

FD.io VPP is, at it’s core, a scalable layer 2-4 network stack. It supports integration into both Open Stack and
Kubernetes environments. It supports network management features including configuration, counters and sampling.
It supports extending with plugins, tracing and debugging. It supports use cases such as vSwitch, vRouter, Gateways,
Firewalls and Load Balancers, to name but a few. Finally it is useful both a software development kit or an appliance
out of the box.

Contents 1

Vector Packet Processor Documentation, Release 0.1

2 Contents

CHAPTER 1

Overview

1.1 What is VPP?

FD.io’s Vector Packet Processing (VPP) technology is a Fast, Scalable and Deterministic, Packet Processing stack
that runs on commodity CPUs. It provides out-of-the-box production quality switch/router functionality and much,
much more. FD.io VPP is at the same time, an Extensible and Modular Design and Developer Friendly framework,
capable of boot-strapping the development of packet-processing applications. The benefits of FD.io VPP are its high
performance, proven technology, its modularity and flexibility, integrations and rich feature set.

FD.io VPP is vector packet processing software, to learn more about what that means, see the what-is-vector-packet-
processing section.

For more detailed information on FD.io features, see the following sections:

1.1.1 Packet Processing

• Layer 2 - 4 Network Stack

– Fast lookup tables for routes, bridge entries

– Arbitrary n-tuple classifiers

– Control Plane, Traffic Management and Overlays

• Linux and FreeBSD support

– Wide support for standard Operating System Interfaces such as AF_Packet, Tun/Tap & Netmap.

• Wide network and cryptograhic hardware support with DPDK.

• Container and Virtualization support

– Para-virtualized intefaces; Vhost and Virtio

– Network Adapters over PCI passthrough

– Native container interfaces; MemIF

3

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/FreeBSD
https://www.dpdk.org/

Vector Packet Processor Documentation, Release 0.1

• Universal Data Plane: one code base, for many use cases

– Discrete appliances; such as Routers and Switches.

– Cloud Infrastructure and Virtual Network Functions

– Cloud Native Infrastructure

– The same binary package for all use cases.

• Out of the box production quality, with thanks to CSIT.

For more information, please see Features for the complete list.

1.1.2 Fast, Scalable and Deterministic

• Continuous integration and system testing

– Including continuous & extensive, latency and throughput testing

• Layer 2 Cross Connect (L2XC), typically achieve 15+ Mpps per core.

• Tested to achieve zero packet drops and ~15µs latency.

• Performance scales linearly with core/thread count

• Supporting millions of concurrent lookup tables entries

Please see Performance for more information.

1.1.3 Developer Friendly

• Extensive runtime counters; throughput, intructions per cycle, errors, events etc.

• Integrated pipeline tracing facilities

• Multi-language API bindings

• Integrated command line for debugging

• Fault-tolerant and upgradable

– Runs as a standard user-space process for fault tolerance, software crashes seldom require more than a
process restart.

– Improved fault-tolerance and upgradability when compared to running similar packet processing in the
kernel, software updates never require system reboots.

– Development expierence is easier compared to similar kernel code

– Hardware isolation and protection (iommu)

• Built for security

– Extensive white-box testing

– Image segment base address randomization

– Shared-memory segment base address randomization

– Stack bounds checking

– Static analysis with Coverity

4 Chapter 1. Overview

https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Network_function_virtualization
https://www.cncf.io/
https://wiki.fd.io/view/CSIT#Start_Here
https://wiki.fd.io/view/CSIT#Start_Here
https://en.wikipedia.org/wiki/Instructions_per_cycle
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://en.wikipedia.org/wiki/Coverity

Vector Packet Processor Documentation, Release 0.1

1.1.4 Extensible and Modular Design

• Pluggable, easy to understand & extend

• Mature graph node architecture

• Full control to reorganize the pipeline

• Fast, plugins are equal citizens

Modular, Flexible, and Extensible

The FD.io VPP packet processing pipeline is decomposed into a ‘packet processing graph’. This modular approach
means that anyone can ‘plugin’ new graph nodes. This makes VPP easily exensible and means that plugins can be
customized for specific purposes. VPP is also configurable through it’s Low-Level API.

Fig. 1: Extensible and modular graph node architecture.

At runtime, the FD.io VPP platform assembles a vector of packets from RX rings, typically up to 256 packets in a
single vector. The packet processing graph is then applied, node by node (including plugins) to the entire packet vector.
The received packets typically traverse the packet processing graph nodes in the vector, when the network processing
represented by each graph node is applied to each packet in turn. Graph nodes are small and modular, and loosely
coupled. This makes it easy to introduce new graph nodes and rewire existing graph nodes.

Plugins are shared libraries and are loaded at runtime by VPP. VPP find plugins by searching the plugin path for
libraries, and then dynamically loads each one in turn on startup. A plugin can introduce new graph nodes or rearrange
the packet processing graph. You can build a plugin completely independently of the FD.io VPP source tree, which
means you can treat it as an independent component.

1.2 Features

SDN & Cloud Integrations Control Plane Plugins
Tunnels Layer 4

Layer 3 Traffic Management
Layer 2

Devices

1.2.1 Devices

Hardware

• DPDK

1.2. Features 5

https://en.wikipedia.org/wiki/Library_(computing)
https://www.dpdk.org/

Vector Packet Processor Documentation, Release 0.1

– Network Interfaces

– Cryptographic Devices

• Open Data Plane

• Intel Ethernet Adaptive Virtual Function

Operating System

• Netmap

• af_packet

• Tap V2 (FastTap)

Virtualization:

• SSVM

• Vhost / VirtIO

Containers

• Vhost-user

• MemIF

1.2.2 SDN & Cloud Integrations

1.2.3 Traffic Management

IP Layer Input Checks

• Source Reverse Path Forwarding

• Time To Live expiration

• IP header checksum

• Layer 2 Length < IP Length

Classifiers

• Multiple million Classifiers - Arbitrary N-tuple

Policers

• Colour Aware & Token Bucket

• Rounding Closest/Up/Down

• Limits in PPS/KBPS

• Types:

6 Chapter 1. Overview

https://doc.dpdk.org/guides/nics/
https://doc.dpdk.org/guides/cryptodevs/
https://github.com/FDio/odp4vpp
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ethernet-adaptive-virtual-function-hardware-spec.pdf
http://info.iet.unipi.it/~luigi/netmap/
http://man7.org/linux/man-pages/man7/packet.7.html

Vector Packet Processor Documentation, Release 0.1

– Single Rate Two Colour

– Single Rate Three Colour

– Dual Rate Three Colour

• Action Triggers

– Conform

– Exceed

– Violate

• Actions Type

– Drop

– Transmit

– Mark-and-transmit

Switched Port Analyzer (SPAN) * mirror traffic to another switch port

ACLs

• Stateful

• Stateless

COP

MAC/IP Pairing

(security feature).

1.2.4 Layer 2

MAC Layer

• Ethernet

Discovery

• Cisco Discovery Protocol

• Link Layer Discovery Protocol (LLDP)

Link Layer Control Protocol

• Bit Index Explicit Replication – Link Layer Multi-cast forwarding.

• Link Layer Control (LLC) - multiplex protocols over the MAC layer.

• Spatial Reuse Protocol (SRP)

• High-Level Data Link Control (HDLC)

• Logical link control (LLC)

1.2. Features 7

Vector Packet Processor Documentation, Release 0.1

• Link Agg Control Protocol (Active/Active, Active/Passive) – 18.04

Virtual Private Networks

• MPLS

– MPLS-o-Ethernet – Deep label stacks supported

• Virtual Private LAN Service (VPLS)

• VLAN

• Q-in-Q

• Tag-rewrite (VTR) - push/pop/Translate (1:1,1:2, 2:1,2:2)

• Ethernet flow point Filtering

• Layer 2 Cross Connect

Bridging

• Bridge Domains

• MAC Learning (50k addresses)

• Split-horizon group support

• Flooding

ARP

• Proxy

• Termination

• Bidirectional Forwarding Detection

Integrated Routing and Bridging (IRB)

• Flexibility to both route and switch between groups of ports.

• Bridged Virtual Interface (BVI) Support, allows traffic switched traffic to be routed.

1.2.5 Layer 3

IP Layer

• ICMP

• IPv4

• IPv6

• IPSEC

• Link Local Addressing

8 Chapter 1. Overview

Vector Packet Processor Documentation, Release 0.1

MultiCast

• Multicast FiB

• IGMP

Virtual Routing and forwarding (VRF)

• VRF scaling, thousands of tables.

• Controlled cross-VRF lookups

Multi-path

• Equal Cost Multi Path (ECMP)

• Unequal Cost Multi Path (UCMP)

IPv4

• ARP

• ARP Proxy

• ARP Snooping

IPv6

• Neighbour discovery (ND)

• ND Proxy

• Router Advertisement

• Segment Routing

• Distributed Virtual Routing Resolution

Forwarding Information Base (FIB)

• Hierarchical FIB

• Memory efficient

• Multi-million entry scalable

• Lockless/concurrent updates

• Recursive lookups

• Next hop failure detection

• Shared FIB adjacencies

• Multicast support

• MPLS support

1.2. Features 9

Vector Packet Processor Documentation, Release 0.1

1.2.6 Layer 4

1.2.7 Tunnels

Layer 2

• L2TP

• PPP

• VLAN

Layer 3

• Mapping of Address and Port with Encapsulation (MAP-E)

• Lightweight IPv4 over IPv6

– An Extension to the Dual-Stack Lite Architecture

• GENEVE

• VXLAN

Segment Routing

• IPv6

• MPLS

Generic Routing Encapsulation (GRE) * GRE over IPSEC * GRE over IP * MPLS * NSH

1.2.8 Control Plane

• DHCP client/proxy

• DHCPv6 Proxy

1.2.9 Plugins

• iOAM

1.3 Performance

1.3.1 Overview

One of the benefits of FD.io VPP, is high performance on relatively low-power computing, this performance is based
on the following features:

• A high-performance user-space network stack designed for commodity hardware.

– L2, L3 and L4 features and encapsulations.

• Optimized packet interfaces supporting a multitude of use cases.

10 Chapter 1. Overview

Vector Packet Processor Documentation, Release 0.1

– An integrated vhost-user backend for high speed VM-to-VM connectivity.

– An integrated memif container backend for high speed Container-to-Container connectivity.

– An integrated vhost based interface to punt packets to the Linux Kernel.

• The same optimized code-paths run execute on the host, and inside VMs and Linux containers.

• Leverages best-of-breed open source driver technology: DPDK.

• Tested at scale; linear core scaling, tested with millions of flows and mac addresses.

These features have been designed to take full advantage of common micro-processor optimization techniques, such
as:

• Reducing cache and TLS misses by processing packets in vectors.

• Realizing IPC gains with vector instructions such as: SSE, AVX and NEON.

• Eliminating mode switching, context switches and blocking, to always be doing useful work.

• Cache-lined aliged buffers for cache and memory efficiency.

1.3.2 Packet Throughput Graphs

These are some of the packet throughput graphs for FD.io VPP 18.04 from the CSIT 18.04 benchmarking report.

L2 Ethernet Switching Throughput Tests

VPP NDR 64B packet throughput in 1 Core, 1 Thread setup, is presented in the graph below.

NDR Performance Tests

This is a VPP NDR 64B packet throughput in 1 Core, 1 Thread setup, live graph of the NDR (No Drop Rate) L2
Performance Tests.

IPv4 Routed-Forwarding Performance Tests

VPP NDR 64B packet throughput in 1t1c setup (1thread, 1core) is presented in the graph below.

IPv6 Routed-Forwarding Performance Tests

VPP NDR 78B packet throughput in 1t1c setup (1 thread, 1 core) is presented in the graph below.

1.3.3 Trending Throughput Graphs

These are some of the trending packet throughput graphs from the CSIT trending dashboard. Please note that,
performance in the trending graphs will change on a nightly basis in line with the software development cycle.

1.3. Performance 11

https://www.dpdk.org/
https://en.wikipedia.org/wiki/Instructions_per_cycle
https://docs.fd.io/csit/rls1804/report/
https://docs.fd.io/csit/master/trending/introduction/index.html

Vector Packet Processor Documentation, Release 0.1

L2 Ethernet Switching Performance Tests

This is a live graph of the 1 Core, 1 Thread, L2 Ethernet Switching Performance Tests Test on the x520 NIC.

IPv4 Routed-Forwarding Performance Tests

This is a live graph of the IPv4 Routed Forwarding Switching Performance Tests.

IPv6 Routed-Forwarding Performance Tests

VPP NDR 78B packet throughput in 1t1c setup (1 thread, 1 core) is presented in the trending graph below.

1.3.4 For More information on CSIT

These are FD.io Continuous System Integration and Testing (CSIT)’s documentation links.

• CSIT Code Documentation

• CSIT Test Overview

• VPP Performance Dashboard

1.4 Architectures and Operating Systems

1.4.1 Architectures

• – The FD.io VPP platform supports:

– * x86/64

– * ARM

1.4.2 Operating Systems and Packaging

FD.io VPP supports package installation on the following recent LTS operating systems releases:

• – Operating Systems:

– * Debian

– * Ubuntu

– * CentOS

– * OpenSUSE

12 Chapter 1. Overview

https://docs.fd.io/csit/master/doc/overview.html
https://docs.fd.io/csit/rls1804/report/introduction/overview.html
https://docs.fd.io/csit/master/trending/introduction/index.html

CHAPTER 2

Getting Started Guides

2.1 Users

2.1.1 Installing and Running VPP Binaries from Packages

If you are simply using vpp, it can be convenient to install the binaries from existing packages. This guide will describe
how pull, install and run the VPP packages.

Package Descriptions

The following is a brief description of the packages to be installed with VPP.

Packages

vpp

Vector Packet Processing executables. This is the primary package that must be installed to use VPP. This package
contains:

• vpp - the vector packet engine

• vpp_api_test - vector packet engine API test tool

• vpp_json_test - vector packet engine JSON test tool

vpp-lib

Vector Packet Processing runtime libraries. The ‘vpp’ package depends on this package, so it will always be installed.
This package contains the VPP shared libraries, including:

• vppinfra - Foundation library supporting vectors, hashes, bitmaps, pools, and string formatting.

13

Vector Packet Processor Documentation, Release 0.1

• svm - vm library

• vlib - vector processing library

• vlib-api - binary API library

• vnet - network stack library

vpp-plugins

Vector Packet Processing plugin modules.

• acl

• dpdk

• flowprobe

• gtpu

• ixge

• kubeproxy

• l2e

• lb

• memif

• nat

• pppoe

• sixrd

• stn

vpp-dbg

Vector Packet Processing debug symbols.

vpp-dev

Vector Packet Processing development support. This package contains development support files for the VPP libraries.

vpp-api-java

JAVA binding for the VPP Binary API.

vpp-api-python

Python binding for the VPP Binary API.

14 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

vpp-api-lua

Lua binding for the VPP Binary API.

vpp-selinux-policy

This package contains the VPP Custom SELinux Policy. It is only generated for Fedora and CentOS distros. For those
distros, the ‘vpp’ package depends on this package, so it will always be installed. It will not enable SELinux on the
system. It will install a Custom VPP SELinux policy that will be used if SELinux is enabled at any time.

Prerequisites

The following is a list of steps needed before installing VPP on a system.

Prerequisites

hugepages

VPP requires ‘hugepages’ to run. VPP will overwrite existing hugepage settings when VPP is installed. By default,
VPP sets the number of hugepages on a system to 1024 2M hugepages (1G hugepages are no longer supported). This
is the number of hugepages on the system, not just used by VPP. When VPP is installed, the following file is copied to
the system and used to apply the hugepage settings on VPP installation and system reboot:

$ cat /etc/sysctl.d/80-vpp.conf
Number of 2MB hugepages desired
vm.nr_hugepages=1024

Must be greater than or equal to (2 * vm.nr_hugepages).
vm.max_map_count=3096

All groups allowed to access hugepages
vm.hugetlb_shm_group=0

Shared Memory Max must be greator or equal to the total size of hugepages.
For 2MB pages, TotalHugepageSize = vm.nr_hugepages * 2 * 1024 * 1024
If the existing kernel.shmmax setting (cat /sys/proc/kernel/shmmax)
is greater than the calculated TotalHugepageSize then set this parameter
to current shmmax value.
kernel.shmmax=2147483648

Depending on how the system is being used, this file can be updated to adjust the number of hugepages reserved on a
system. Below are some examples of possible values.

For a small VM with minimal workload:

vm.nr_hugepages=512
vm.max_map_count=2048
kernel.shmmax=1073741824

For a large system running multiple VMs, each needing its own set of hugepages:

2.1. Users 15

Vector Packet Processor Documentation, Release 0.1

vm.nr_hugepages=32768
vm.max_map_count=66560
kernel.shmmax=68719476736

Note: If VPP is being run in a Virtual Machine (VM), the VM must have hugepage backing. When VPP is installed,
it will attempt to overwrite existing hugepage setting. If the VM does not have hugepage backing, this will fail, but
this may go unnoticed. When the VM is rebooted, on system startup, ‘vm.nr_hugepages’ will be reapplied, will fail,
and the VM will abort kernel boot, locking up the VM. To avoid this scenario, ensure the VM has enough hugepage
backing.

Installing VPP Binaries

Installing on Ubuntu

The following are instructions on how to install VPP on Ubuntu.

Ubuntu 16.04 - Setup the fd.io Repository

From the following choose one of the releases to install.

Update the OS

It is probably a good idea to update and upgrade the OS before starting

apt-get update

Point to the Repository

Create a file “/etc/apt/sources.list.d/99fd.io.list” with the contents that point to the version needed. The contents
needed are shown below.

VPP latest Release

Create the file /etc/apt/sources.list.d/99fd.io.list with contents:

deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ .
→˓/

VPP stable/1804 Branch

Create the file /etc/apt/sources.list.d/99fd.io.list with contents:

deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.stable.1804.ubuntu.
→˓xenial.main/ ./

16 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

VPP master Branch

Create the file /etc/apt/sources.list.d/99fd.io.list with contents:

deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.master.ubuntu.xenial.
→˓main/ ./

Install the Mandatory Packages

sudo apt-get update
sudo apt-get install vpp vpp-lib vpp-plugin

Install the Optional Packages

sudo apt-get install vpp-dbg vpp-dev vpp-api-java vpp-api-python vpp-api-lua

Uninstall the Packages

sudo apt-get remove --purge vpp*

Installing on Centos

The following are instructions on how to install VPP on Centos.

Setup the fd.io Repository - Centos 7

Update the OS

It is probably a good idea to update and upgrade the OS before starting:

$ sudo yum update

Point to the Repository

For CentOS based systems, there are two respositories to pull VPP binaries from.

• CentOS NFV SIG Repository

• Nexus Repository

CentOS NFV SIG Repository

VPP is not in the official CentOS 7 distro. However, CentOS has Special Interest Groups (SIG), which are smaller
groups within the CentOS community that focus on a small set of issues. The CentOS NFV (Network Function

2.1. Users 17

Vector Packet Processor Documentation, Release 0.1

Virtualization) SIG was created to provide a CentOS-based stack that will serve as a platform for the deployment and
testing of virtual network functions (VNFs). VPP has been included in this SIG.

To install released packages from the CentOS NFV SIG Repository on an updated Centos 7 system, first, install the
CentOS NFV SIG FIDO repo file:

$ sudo yum install centos-release-fdio

then ‘Install VPP RPMs’, as described below.

This will install the latest VPP version from the repository. To install an older version, once the CentOS NFV SIG
FDIO repo file has been installed, list the stored versions:

$ sudo yum --showduplicates list vpp* | expand
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile

* base: repos-va.psychz.net

* epel: download-ib01.fedoraproject.org

* extras: mirror.siena.edu

* updates: repo1.ash.innoscale.net
Available Packages
vpp.x86_64 17.10-1 centos-fdio
vpp.x86_64 18.01.1-1 centos-fdio
vpp.x86_64 18.01.2-1 centos-fdio
vpp.x86_64 18.04-1 centos-fdio
vpp-api-java.x86_64 17.10-1 centos-fdio
vpp-api-java.x86_64 18.01.1-1 centos-fdio
vpp-api-java.x86_64 18.01.2-1 centos-fdio
vpp-api-java.x86_64 18.04-1 centos-fdio
vpp-api-lua.x86_64 17.10-1 centos-fdio
vpp-api-lua.x86_64 18.01.1-1 centos-fdio
vpp-api-lua.x86_64 18.01.2-1 centos-fdio
vpp-api-lua.x86_64 18.04-1 centos-fdio
vpp-api-python.x86_64 17.10-1 centos-fdio
vpp-api-python.x86_64 18.01.1-1 centos-fdio
vpp-api-python.x86_64 18.01.2-1 centos-fdio
vpp-api-python.x86_64 18.04-1 centos-fdio
vpp-devel.x86_64 17.10-1 centos-fdio
vpp-devel.x86_64 18.01.1-1 centos-fdio
vpp-devel.x86_64 18.01.2-1 centos-fdio
vpp-devel.x86_64 18.04-1 centos-fdio
vpp-lib.x86_64 17.10-1 centos-fdio
vpp-lib.x86_64 18.01.1-1 centos-fdio
vpp-lib.x86_64 18.01.2-1 centos-fdio
vpp-lib.x86_64 18.04-1 centos-fdio
vpp-plugins.x86_64 17.10-1 centos-fdio
vpp-plugins.x86_64 18.01.1-1 centos-fdio
vpp-plugins.x86_64 18.01.2-1 centos-fdio
vpp-plugins.x86_64 18.04-1 centos-fdio
vpp-selinux-policy.x86_64 18.04-1 centos-fdio

Then install a particular version:

18 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

$ sudo yum install vpp-17.10-1.x86_64

Nexus Repository

Build artifacts are also posted to a FD.io Nexus Repository. This includes official point releases, as well as nightly
builds. To use any of these build artifacts, create a file ‘/etc/yum.repos.d/fdio-release.repo’ with the content that points
to the version needed. Below are some common examples of the content needed:

VPP Latest Release

To allow ‘yum’ access to the official VPP releases, create the file ‘/etc/yum.repos.d/fdio-release.repo’ with the follow-
ing content:

$ cat /etc/yum.repos.d/fdio-release.repo
[fdio-release]
name=fd.io release branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.centos7/
enabled=1
gpgcheck=0

The ‘yum install vpp’ command will install the most recent release. To install older releases, run the following
command to get the list of releases provided:

$ sudo yum --showduplicates list vpp* | expand

Then choose the release to install. See ‘CentOS NFV SIG Repository’ for sample ‘yum –showduplicates list’ output
and an example of installing a particular version of the RPMs.

VPP Stable Branch

To allow yum access to the build artifacts for a VPP stable branch, create the file ‘/etc/yum.repos.d/fdio-release.repo’
with the following content:

$ cat /etc/yum.repos.d/fdio-release.repo
[fdio-stable-1804]
name=fd.io stable/1804 branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.stable.1804.centos7/
enabled=1
gpgcheck=0

For other stable branches, replace the ‘1804’ from the above content with the desired release. Examples: 1606, 1609,
1701, 1704, 1707, 1710, 1804, 1807

The ‘yum install vpp’ command will install the most recent build on the branch, not the latest offical release. Run the
following command to get the list of images produce by the branch:

$ sudo yum --showduplicates list vpp* | expand

Then choose the image to install. See ‘CentOS NFV SIG Repository’ for sample ‘yum –showduplicates list’ output
and an example of installing a particular version of the RPMs.

2.1. Users 19

Vector Packet Processor Documentation, Release 0.1

VPP Master Branch

To allow yum access to the nightly builds from the VPP master branch, create the file ‘/etc/yum.repos.d/fdio-
release.repo’ with the following content:

$ cat /etc/yum.repos.d/fdio-release.repo
[fdio-master]
name=fd.io master branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.master.centos7/
enabled=1
gpgcheck=0

The ‘yum install vpp’ command will install the most recent build on the branch. Run the following command to get
the list of images produce by the branch:

$ sudo yum --showduplicates list vpp* | expand

Then choose the image to install. See ‘CentOS NFV SIG Repository’ for sample ‘yum –showduplicates list’ output
and an example of installing a particular version of the RPMs.

Install VPP RPMs

To install the VPP packet engine, run the following:

$ sudo yum install vpp

The ‘vpp’ RPM depend on the ‘vpp-lib’ and ‘vpp-selinux-policy’ RPMs, so they will be installed as well.

Note: The ‘vpp-selinux-policy’ will not enable SELinux on the system. It will install a Custom VPP SELinux policy
that will be used if SELinux is enabled at any time.

There are additional packages that are optional. These packages can be combined with the command above and
installed all at once, or installed as needed:

$ sudo yum install vpp-plugins vpp-devel vpp-api-python vpp-api-lua vpp-api-java

Starting VPP

Once VPP is installed on the system, to run VPP as a systemd service on CentOS, run:

$ sudo systemctl start vpp

Then to enable VPP to start on system reboot:

$ sudo systemctl enable vpp

Outside of running VPP as a systemd service, VPP can be started manually or made to run within GDB for debugging.
See Running VPP for more details and ways to tailor VPP to a specific system.

20 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Uninstall the VPP RPMs

$ sudo yum autoremove vpp*

Installing on openSUSE

The following are instructions on how to install VPP on openSUSE.

Installing

Top install VPP on openSUSE first pick the following release and execute the appropriate commands.

openSUSE Tumbleweed (rolling release)

sudo zypper install vpp vpp-plugins

openSUSE Leap 42.3

sudo zypper addrepo --name network https://download.opensuse.org/repositories/network/
→˓openSUSE_Leap_42.3/network.repo
sudo zypper install vpp vpp-plugins

Uninstall

sudo zypper remove -u vpp vpp-plugins

openSUSE Tumbleweed (rolling release)

sudo zypper remove -u vpp vpp-plugins

openSUSE Leap 42.3

sudo zypper remove -u vpp vpp-plugins
sudo zypper removerepo network

For More Information

For more information on VPP with openSUSE, please look at the following post.

• https://www.suse.com/communities/blog/vector-packet-processing-vpp-opensuse/

2.1. Users 21

https://www.suse.com/communities/blog/vector-packet-processing-vpp-opensuse/

Vector Packet Processor Documentation, Release 0.1

Running VPP

The following are tips and notes on how to manage and run VPP once it is installed.

Running VPP

‘vpp’ Usergroup

When VPP is installed, a new usergroup ‘vpp’ is created. To avoid running the VPP CLI (vppctl) as root, add any
existing users to the new group that need to interact with VPP:

$ sudo usermod -a -G vpp user1

Update your current session for the group change to take effect:

$ newgrp vpp

VPP Systemd File - ‘vpp.service’

When the VPP is installed, a systemd service files is also installed. This file, vpp.service (Ubuntu:
/lib/systemd/system/vpp.service and CentOS: /usr/lib/systemd/system/vpp.service), controls how VPP is run as a ser-
vice. For example, whether or not to restart on failure and if so, with how much delay. Also, which UIO driver should
be loaded and location of the ‘startup.conf’ file.

$ cat /usr/lib/systemd/system/vpp.service
[Unit]
Description=Vector Packet Processing Process
After=syslog.target network.target auditd.service

[Service]
ExecStartPre=-/bin/rm -f /dev/shm/db /dev/shm/global_vm /dev/shm/vpe-api
ExecStartPre=-/sbin/modprobe uio_pci_generic
ExecStart=/usr/bin/vpp -c /etc/vpp/startup.conf
Type=simple
Restart=on-failure
RestartSec=5s

[Install]
WantedBy=multi-user.target

Note: Some older versions of the ‘uio_pci_generic’ driver don’t bind all the supported NICs properly, so the ‘igb_uio’
driver built from DPDK needs to be installed. This file controls which driver is loaded at boot. ‘startup.conf’ file
controls which driver is used.

VPP Configuration File - ‘startup.conf’

After a successful installation, VPP installs a startup config file named ‘startup.conf’ in the ‘/etc/vpp/’’ directory. This
file can be tailored to make VPP run as desired, but contains default values for typical installations. Below are more
details about this file and parameter and values it contains.

22 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Introduction

The VPP network stack comes with several configuration options that can be provided either on the command line
when VPP is started, or in a configuration file. Specific applications built on the stack have been known to require a
dozen arguments, depending on requirements.

Command-line Arguments

Parameters are grouped by a section name. When providing more than one parameter to a section, all parameters for
that section must be wrapped in curly braces. For example, to start VPP with configuration data via the command line
with the section name ‘unix’:

$ sudo /usr/bin/vpp unix { interactive cli-listen 127.0.0.1:5002 }

The command line can be presented as a single string or as several; anything given on the command line is concatenated
with spaces into a single string before parsing. VPP applications must be able to locate their own executable images.
The simplest way to ensure this will work is to invoke a VPP application by giving its absolute path. For example:
‘/usr/bin/vpp <options>’ At startup, VPP applications parse through their own ELF-sections [primarily] to make lists
of init, configuration, and exit handlers.

When developing with VPP, in gdb it’s often sufficient to start an application like this:

(gdb) run unix interactive

Configuration File

It is also possible to supply the configuration parameters in a startup configuration. The path of the file is provided
to the VPP application on its command line. The format of the configuration file is a simple text file with the same
content as the command line, but with the benefit of being able to use newlines to make the content easier to read. For
example:

$ cat /etc/vpp/startup.conf
unix {

nodaemon
log /var/log/vpp/vpp.log
full-coredump
cli-listen localhost:5002

}

api-trace {
on

}

dpdk {
dev 0000:03:00.0

}

VPP is then instructed to load this file with the -c option. For example:

$ sudo /usr/bin/vpp -c /etc/vpp/startup.conf

When the VPP service is started, VPP is started with this option via another installed file, vpp.service (Ubuntu:
/lib/systemd/system/vpp.service and CentOS: /usr/lib/systemd/system/vpp.service). See ‘ExecStart’ below:

2.1. Users 23

Vector Packet Processor Documentation, Release 0.1

$ cat /lib/systemd/system/vpp.service
[Unit]
Description=vector packet processing engine
After=network.target

[Service]
Type=simple
ExecStartPre=-/bin/rm -f /dev/shm/db /dev/shm/global_vm /dev/shm/vpe-api
ExecStartPre=-/sbin/modprobe uio_pci_generic
ExecStart=/usr/bin/vpp -c /etc/vpp/startup.conf
ExecStopPost=/bin/rm -f /dev/shm/db /dev/shm/global_vm /dev/shm/vpe-api
Restart=always

[Install]
WantedBy=multi-user.target

Configuration Parameters

Below is the list of section names and their associated parameters. This is not an exhaustive list of parameters
available. The command-line argument parsers can be found in the source code by searching for instances of the
VLIB_CONFIG_FUNCTION and VLIB_EARLY_CONFIG_FUNCTION macro.

For example, the invocation ‘VLIB_CONFIG_FUNCTION (foo_config, “foo”)’ will cause the function ‘foo_config’
to receive all parameters given in a parameter block named “foo”: “foo { arg1 arg2 arg3 . . . }”.

“acl-plugin” Parameters

The following parameters should only be set by those that are familiar with the interworkings of VPP and the ACL
Plugin.

• connection hash buckets <n> TBD

Example: TBD

• connection hash memory <n> TBD

Example: TBD

• connection count max <n> TBD

Example: TBD

• main heap size <n>G|<n>M|<n>K|<n> TBD

Example: TBD

• hash lookup heap size <n>G|<n>M|<n>K|<n> TBD

Example: TBD

• hash lookup hash buckets <n> TBD

Example: TBD

• hash lookup hash memory <n> TBD

Example: TBD

• use tuple merge <n> TBD

Example: TBD

24 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

• tuple merge split threshold <n> TBD

Example: TBD

• reclassify sessions <n> TBD

Example: TBD

“api-queue” Parameters

The following parameters should only be set by those that are familiar with the interworkings of VPP.

• length <n> Sets the api queue length. Minimum valid queue length is 1024, which is also the default.

Example: length 2048

“api-segment” Parameters

These values control various aspects of the binary API interface to VPP.

• prefix <path> Sets the prefix prepended to the name used for shared memory (SHM) segments. The default is
empty, meaning shared memory segments are created directly in the SHM directory ‘/dev/shm’. It is worth
noting that on many systems ‘/dev/shm’ is a symbolic link to somewhere else in the file system; Ubuntu
links it to ‘/run/shm’.

Example: prefix /run/shm

• uid <number|name> Sets the user ID or name that should be used to set the ownership of the shared memory
segments. Defaults to the same user that VPP is started with, probably root.

Example: uid root

• gid <number|name> Sets the group ID or name that should be used to set the ownership of the shared memory
segments. Defaults to the same group that VPP is started with, probably root.

Example: gid vpp

The following parameters should only be set by those that are familiar with the interworkings of VPP.

• baseva <x> Set the base address for SVM global region. If not set, on AArch64, the code will try to determine
the base address. All other default to 0x30000000.

Example: baseva 0x20000000

• global-size <n>G|<n>M|<n> Set the global memory size, memory shared across all router instances, packet
buffers, etc. If not set, defaults to 64M. The input value can be set in GB, MB or bytes.

Example: global-size 2G

• global-pvt-heap-size <n>M|size <n> Set the size of the global VM private mheap. If not set, defaults to 128k.
The input value can be set in MB or bytes.

Example: global-pvt-heap-size size 262144

• api-pvt-heap-size <n>M|size <n> Set the size of the api private mheap. If not set, defaults to 128k. The input
value can be set in MB or bytes.

Example: api-pvt-heap-size 1M

• api-size <n>M|<n>G|<n> Set the size of the API region. If not set, defaults to 16M. The input value can be
set in GB, MB or bytes.

Example: api-size 64M

2.1. Users 25

Vector Packet Processor Documentation, Release 0.1

“api-trace” Parameters

The ability to trace, dump, and replay control-plane API traces makes all the difference in the world when trying to
understand what the control-plane has tried to ask the forwarding-plane to do.

• on|enable Enable API trace capture from the beginning of time, and arrange for a post-mortem dump of the
API trace if the application terminates abnormally. By default, the (circular) trace buffer will be configured
to capture 256K traces. The default ‘startup.conf’ file has trace enabled by default, and unless there is a
very strong reason, it should remain enabled.

Example: on

• nitems <n> Configure the circular trace buffer to contain the last <n> entries. By default, the trace buffer
captures the last 256K API messages received.

Example: nitems 524288

• save-api-table <filename> Dumps the API message table to /tmp/<filename>.

Example: save-api-table apiTrace-07-04.txt

Typically, one simply enables the API message trace scheme:

api-trace { on }

“buffers” Parameters

Command line Buffer configuration controls buffer management.

• memory-size-in-mb <n> Configure the memory size used for buffers. If not set, VPP defaults to 32MB.

Example: memory-size-in-mb 64

“cj” Parameters

The circular journal (CJ) thread-safe circular log buffer scheme is occasionally useful when chasing bugs. Calls to it
should not be checked in. See . . . /vlib/vlib/unix/cj.c. The circular journal is disables by default. When enabled, the
number of records must be provided, there is no default value.

• records <n> Configure the number of circular journal records in the circular buffer. The number of records
should be a power of 2.

Example: records 131072

• on Turns on logging at the earliest possible moment.

Example: on

“cpu” Parameters

Command-line CPU configuration controls the creation of named thread types, and the cpu affinity thereof. In the
VPP there is one main thread and optionally the user can create worker(s). The main thread and worker thread(s) can
be pinned to CPU core(s) automatically or manually.

Automatic Pinning:

• workers <n> Create <n> worker threads.

Example: workers 4

26 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

• io <n> Create <n> i/o threads.

Example: io 2

• main-thread-io Handle i/o devices from thread 0, hand off traffic to worker threads. Requires “workers <n>”.

Example: main-thread-io

• skip-cores <n> Sets number of CPU core(s) to be skipped (1 . . . N-1). Skipped CPU core(s) are not used for
pinning main thread and working thread(s). The main thread is automatically pinned to the first available
CPU core and worker(s) are pinned to next free CPU core(s) after core assigned to main threadLeave the
low nn bits of the process affinity mask clear.

Example: skip-cores 4

Manual Pinning:

• main-core <n> Assign main thread to a specific core.

Example: main-core 1

• coremask-workers <hex-mask> Place worker threads according to the bitmap hex-mask.

Example: coremask-workers 0x0000000000C0000C

• corelist-workers <list> Same as coremask-workers but accepts a list of cores instead of a bitmap.

Example: corelist-workers 2-3,18-19

• coremask-io <hex-mask> Place I/O threads according to the bitmap hex-mask.

Example: coremask-io 0x0000000003000030

• corelist-io <list> Same as coremask-io but accepts a list of cores instead of a bitmap.

Example: corelist-io 4-5,20-21

• coremask-hqos-threads <hex-mask> Place HQoS threads according to the bitmap hex-mask. A HQoS thread
can run multiple HQoS objects each associated with different output interfaces.

Example: coremask-hqos-threads 0x000000000C0000C0

• corelist-hqos-threads <list> Same as coremask-hqos-threads but accepts a list of cores instead of a bitmap.

Example: corelist-hqos-threads 6-7,22-23

Other:

• use-pthreads TBD

Example: use-pthreads

• thread-prefix <prefix> Set a prefix to be prepended to each thread name. The thread name already contains an
underscore. If not provided, the default is ‘vpp’. Currently, prefix used on threads: ‘vpp_main’, ‘vpp_stats’

Example: thread-prefix vpp1

• scheduler-policy rr|fifo|batch|idle|other TBD

Example: scheduler-policy fifo

• scheduler-priority <n> Set the scheduler priority. Only valid if the ‘scheduler-policy’ is set to ‘fifo’ or ‘rr’.
The valid ranges for the scheduler priority depends on the ‘scheduler-policy’ and the current kernel version
running. The range is typically 1 to 99, but see the linux man pages for ‘sched’ for more details. If this
value is not set, the current linux kernel default is left in place.

Example: scheduler-priority 50

2.1. Users 27

Vector Packet Processor Documentation, Release 0.1

• <thread-name> <count> Set the number of threads for a given thread (by name). Some threads, like ‘stats’,
have a fixed number of threads and cannot be changed. List of possible threads include (but not limited
too): hqos-threads, workers

Example: hqos-threads 2

Note: The “main” thread always occupies the lowest core-id specified in the DPDK [process-level] coremask.

Here’s a full-bore manual placement example:

/usr/bin/vpp unix interactive tuntap disable cpu { main-thread-io coremask-workers
→˓18 coremask-stats 4 } dpdk { coremask 1e }

taskset -a -p <vpe-pid>
pid 16251's current affinity mask: 2 # main thread
pid 16288's current affinity mask: ffffff # DPDK interrupt thread (not bound to a
→˓core)
pid 16289's current affinity mask: 4 # stats thread
pid 16290's current affinity mask: 8 # worker thread 0
pid 16291's current affinity mask: 10 # worker thread 1

“dpdk” Parameters

Command line DPDK configuration controls a number of parameters, including device whitelisting, the number of
CPUs available for launching dpdk-eal-controlled threads, the number of I/O buffers, and the process affinity mask.
In addition, the DPDK configuration function attempts to support all of the DPDK EAL configuration parameters.

All of the DPDK EAL options should be available. See ../src/plugins/dpdk/device/dpdk_priv.h, look at the set of
“foreach_eal_XXX” macros.

Popular options include:

• dev <pci-dev> White-list [as in, attempt to drive] a specific PCI device. PCI-dev is a string of the form
“DDDD:BB:SS.F” where:

DDDD = Domain
BB = Bus Number
SS = Slot number
F = Function

This is the same format used in the linux sysfs tree (i.e. /sys/bus/pci/devices) for PCI device directory
names.

Example: dev 0000:02:00.0

• dev <pci-dev> { .. } When whitelisting specific interfaces by specifying PCI address, additional custom
parameters can also be specified. Valid options include:

– num-rx-queues <n> Number of receive queues. Also enables RSS. Default value is 1.

– num-tx-queues <n> Number of transmit queues. Default is equal to number of worker threads
or 1 if no workers treads.

– num-rx-desc <n> Number of descriptors in receive ring. Increasing or reducing number can
impact performance. Default is 1024.

– num-rt-desc <n> Number of descriptors in transmit ring. Increasing or reducing number can
impact performance. Default is 1024.

28 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

– workers TBD

– vlan-strip-offload on|off: VLAN strip offload mode for interface. VLAN stripping is off by
default for all NICs except VICs, using ENIC driver, which has VLAN stripping on by default.

– hqos Enable the Hierarchical Quaity-of-Service (HQoS) scheduler, default is disabled. This en-
ables HQoS on specific output interface.

– hqos { .. } HQoS can also have its own set of custom parameters. Setting a custom parameter
also enables HQoS.

* hqos-thread <n> HQoS thread used by this interface. To setup a pool of threads that are
shared by all HQoS interfaces, set via the*’cpu’* section using either ‘corelist-hqos-
threads’ or ‘coremask-hqos-threads’.

– rss TBD

Example:

dev 0000:02:00.1 {
num-rx-queues 2
num-tx-queues 2

}

• vdev <eal-command> Provide a DPDK EAL command to specify bonded Ethernet interfaces, operating
modes and PCI addresses of slave links. Only XOR balanced (mode 2) mode is supported.

Example:

vdev eth_bond0,mode=2,slave=0000:0f:00.0,slave=0000:11:00.0,xmit_policy=l34
vdev eth_bond1,mode=2,slave=0000:10:00.0,slave=0000:12:00.0,xmit_policy=l34

• num-mbufs <n> Increase number of buffers allocated. May be needed in scenarios with large number of
interfaces and worker threads, or a lot of physical interfaces with multiple RSS queues. Value is per
CPU socket. Default is 16384.

Example: num-mbufs 128000

• no-pci When VPP is started, if an interface is not owned by the linux kernel (interface is administratively
down), VPP will attempt to manage the interface. ‘no-pci’ indicates that VPP should not walk the
PCI table looking for interfaces.

Example: no-pci

• no-hugetlb Don’t use huge TLB pages. Potentially useful for running simulator images.

Example: no-hugetlb

• kni <n> Number of KNI interfaces. Refer to the DPDK documentation.

Example: kni 2

• uio-driver uio_pci_generic|igb_uio|vfio-pci|auto Change UIO driver used by VPP. Default is ‘auto’.

Example: uio-driver igb_uio

• socket-mem <n> Change hugepages allocation per-socket, needed only if there is need for larger number
of mbufs. Default is 64 hugepages on each detected CPU socket.

Example: socket-mem 2048,2048

Other options include:

• enable-tcp-udp-checksum Enables UDP/TCP RX checksum offload.

Example: enable-tcp-udp-checksum

2.1. Users 29

Vector Packet Processor Documentation, Release 0.1

• no-multi-seg Disable mutli-segment buffers, improves performance but disables Jumbo MTU support.

Example: no-multi-seg

• no-tx-checksum-offload Disables UDP/TCP TX checksum offload. Typically needed for use faster vector
PMDs (together with no-multi-seg).

Example: no-tx-checksum-offload

• decimal-interface-names Format DPDK device names with decimal, as opposed to hexadecimal.

Example: decimal-interface-names

• log-level emergency|alert|critical|error|warning|notice|info|debug Set the log level for DPDK logs. Default
is ‘notice’.

Example: log-level error

• dev default { .. } Change default settings for all intefaces. This sections supports the same set of custom pa-
rameters described in ‘dev <pci-dev> { .. }’.

Example:

dev default {
num-rx-queues 3
num-tx-queues 3

}

“dns” Parameters

• max-cache-size <n> TBD

Example: TBD

• max-ttl <n> TBD

Example: TBD

“heapsize” Parameters

Heapsize configuration controls the size of the main heap. The heap size is configured very early in the boot sequence,
before loading plug-ins or doing much of anything else.

• heapsize <n>M|<n>G Specifies the size of the heap in MB or GB. The default is 1GB. Setting the main
heap size to 4GB or more requires recompilation of the entire system with CLIB_VEC64 > 0. See
. . . /clib/clib/vec_bootstrap.h.

Example: heapsize 2G

“ip” Parameters

IPv4 heap configuration. he heap size is configured very early in the boot sequence, before loading plug-ins or doing
much of anything else.

• heap-size <n>G|<n>M|<n>K|<n> Set the IPv4 mtrie heap size, which is the amount of memory dedicated to
the destination IP lookup table. The input value can be set in GB, MB, KB or bytes. The default value is
32MB.

Example: heap-size 64M

30 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

“ip6” Parameters

IPv6 heap configuration. he heap size is configured very early in the boot sequence, before loading plug-ins or doing
much of anything else.

• heap-size <n>G|<n>M|<n>K|<n> Set the IPv6 forwarding table heap size. The input value can be set in GB,
MB, KB or bytes. The default value is 32MB.

Example: heap-size 64M

• hash-buckets <n> Set the number of IPv6 forwarding table hash buckets. The default value is 64K (65536).

Example: hash-buckets 131072

“l2learn” Parameters

Configure Layer 2 MAC Address learning parameters.

• limit <n> Configures the number of L2 (MAC) addresses in the L2 FIB at any one time, which limits the size
of the L2 FIB to <n> concurrent entries. Defaults to 4M entries (4194304).

Example: limit 8388608

“l2tp” Parameters

IPv6 Layer 2 Tunnelling Protocol Version 3 (IPv6-L2TPv3) configuration controls the method used to locate a specific
IPv6-L2TPv3 tunnel. The following settings are mutually exclusive:

• lookup-v6-src Lookup tunnel by IPv6 source address.

Example: lookup-v6-src

• lookup-v6-dst Lookup tunnel by IPv6 destination address.

Example: lookup-v6-dst

• lookup-session-id Lookup tunnel by L2TPv3 session identifier.

Example: lookup-session-id

“logging” Parameters

• size <n> TBD

Example: TBD

• unthrottle-time <n> TBD

Example: TBD

• default-log-level emerg|alertcrit|err|warn|notice|info|debug|disabled TBD

Example: TBD

• default-syslog-log-level emerg|alertcrit|err|warn|notice|info|debug|disabled TBD

Example: TBD

2.1. Users 31

Vector Packet Processor Documentation, Release 0.1

“mactime” Parameters

• lookup-table-buckets <n> TBD

Example: TBD

• lookup-table-memory <n>G|<n>M|<n>K|<n>

TBD The input value can be set in GB, MB, KB or bytes. The default value is 256KB.

Example: TBD

• timezone_offset <n> TBD

Example: TBD

“map” Parameters

• customer edge TBD

Example: customer edge

“mc” Parameters

MC Test Process.

• interface <name> TBD

Example: TBD

• n-bytes <n> TBD

Example: TBD

• max-n-bytes <n> TBD

Example: TBD

• min-n-bytes <n> TBD

Example: TBD

• seed <n> TBD

Example: TBD

• window <n> TBD

Example: TBD

• verbose TBD

Example: verbose

• no-validate TBD

Example: no-validate

• min-delay <n.n> TBD

Example: TBD

• max-delay <n.n> TBD

Example: TBD

32 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

• no-delay TBD

Example: no-delay

• n-packets <n.n> TBD

Example: TBD

“nat” Parameters

• translation hash buckets <n> TBD

Example: TBD

• translation hash memory <n> TBD

Example: TBD

• user hash buckets <n> TBD

Example: TBD

• user hash memory <n> TBD

Example: TBD

• max translations per user <n> TBD

Example: TBD

• outside VRF id <n> TBD

Example: TBD

• outside ip6 VRF id <n> TBD

Example: TBD

• inside VRF id <n> TBD

Example: TBD

• inside VRF id <n> TBD

Example: TBD

• static mapping only TBD

Example: static mapping only

• connection tracking TBD

Example: connection tracking

• deterministic TBD

Example: deterministic

• nat64 bib hash buckets <n> TBD

Example: TBD

• nat64 bib hash memory <n> TBD

Example: TBD

• nat64 st hash buckets <n> TBD

Example: TBD

2.1. Users 33

Vector Packet Processor Documentation, Release 0.1

• nat64 st hash memory <n> TBD

Example: TBD

• out2in dpo TBD

Example: out2in dpo

• dslite ce TBD

Example: dslite ce

• endpoint-dependent TBD

Example: endpoint-dependent

“oam” Parameters

OAM configuration controls the (ip4-icmp) interval, and number of misses allowed before reporting an oam target
down to any registered listener.

• interval <n.n> Interval, floating-point seconds, between sending OAM IPv4 ICMP messages. Default is 2.04
seconds.

Example: interval 3.5

• misses-allowed <n> Number of misses before declaring an OAM target down. Default is 3 misses.

Example: misses-allowed 5

“plugins” Parameters

A plugin can be disabled by default. It may still be in an experimental phase or only be needed in special circumstances.
If this is the case, the plugin can be explicitely enabled in ‘startup.conf’. Also, a plugin that is enabled by default can
be explicitely disabled in ‘startup.conf’.

Another useful use of this section is to disable all the plugins, then enable only the plugins that are desired.

• path <path> Adjust the plugin path depending on where the VPP plugins are installed.

Example: path /home/bms/vpp/build-root/install-vpp-native/vpp/lib64/vpp_plugins

• name-filter <filter-name> TBD

Example: TBD

• vat-path <path> TBD

Example: TBD

• vat-name-filter <filter-name> TBD

Example: TBD

• plugin <plugin.so> { .. } Configure parameters for a given plugin. Valid parameters are as follows:

– enable Enable the given plugin.

– disable Disable the given plugin.

– skip-version-check In the plugin registration, if ‘.version_required’ is set, the plugin will not be
loaded if there is version mismatch between plugin and VPP. This can be bypassed by setting
“skip-version-check” for specific plugin.

34 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Example: plugin ila_plugin.so { enable skip-version-check }

• plugin default { .. } Set the default behavior for all plugins. Valid parameters are as follows:

– disable Disable all plugins.

Example:

plugin default { disable }
plugin dpdk_plugin.so { enable }
plugin acl_plugin.so { enable }

“plugin_path” Parameters

Alternate syntax to choose plugin path. Plugin_path configuration controls the set of directories searched for vlib
plugins. Supply a colon-separated list of (absolute) directory names: plugin_path dir1:dir2:. . . :dirN

Example: plugin_path /home/bms/vpp/build-root/install-vpp-native/vpp/lib64/vpp_plugins

“punt” Parameters

• socket <path> TBD

Example: TBD

“session” Parameters

• event-queue-length <n> TBD

Example: TBD

• preallocated-sessions <n> TBD

Example: TBD

• v4-session-table-buckets <n> TBD

Example: TBD

• v4-halfopen-table-buckets <n> TBD

Example: TBD

• v6-session-table-buckets <n> TBD

Example: TBD

• v6-halfopen-table-buckets <n> TBD

Example: TBD

• v4-session-table-memory <n>G|<n>M|<n>K|<n> TBD The input value can be set in GB, MB, KB or bytes.

Example: TBD

• v4-halfopen-table-memory <n>G|<n>M|<n>K|<n> TBD The input value can be set in GB, MB, KB or bytes.

Example: TBD

• v6-session-table-memory <n>G|<n>M|<n>K|<n> TBD The input value can be set in GB, MB, KB or bytes.

Example: TBD

2.1. Users 35

Vector Packet Processor Documentation, Release 0.1

• v6-halfopen-table-memory <n>G|<n>M|<n>K|<n> TBD The input value can be set in GB, MB, KB or bytes.

Example: TBD

• local-endpoints-table-memory <n>G|<n>M|<n>K|<n> TBD The input value can be set in GB, MB, KB or
bytes.

Example: TBD

• local-endpoints-table-buckets <n> TBD

Example: TBD

• evt_qs_memfd_seg TBD

Example: evt_qs_memfd_seg

“socketsvr” Parameters

Create a socket server for API server (. . . /vlibmemory/socksvr_vlib.c.). If not set, API server doesn’t run.

• socket-name <filename> Configure API socket filename.

Example: socket-name /run/vpp/vpp-api.sock

• default Use the default API socket (/run/vpp-api.sock).

Example: default

“stats” Parameters

Create a socket server for ‘stats’ poller. If not set, ‘stats’* poller doesn’t run.

• socket-name <filename> Configure ‘stats’ socket filename.

Example: socket-name /run/vpp/stats.sock

• default Use the default ‘stats’ socket (/run/vpp/stats.sock).

Example: default

“statseg” Parameters

• size <n>G|<n>M|<n>K|<n> TBD The input value can be set in GB, MB, KB or bytes.

Example: TBD

“tapcli” Parameters

• mtu <n> TBD

Example: TBD

• disable TBD

Example: disable

36 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

“tcp” Parameters

• preallocated-connections <n> TBD

Example: TBD

• preallocated-half-open-connections <n> TBD

Example: TBD

• buffer-fail-fraction <n.n> TBD

Example: TBD

“tls” Parameters

• se-test-cert-in-ca TBD

Example: se-test-cert-in-ca

• ca-cert-path <filename> TBD If not set, the default is set to ‘/etc/ssl/certs/ca-certificates.crt’.

Example: TBD

“tuntap” Parameters

The “tuntap” driver configures a point-to-point interface between the vpp engine and the local Linux kernel stack.
This allows e.g. users to ssh to the host | VM | container via vpp “revenue” interfaces. It’s marginally useful, and is
currently disabled by default. To [dynamically] create TAP interfaces - the preferred scheme - see the “tap_connect”
binary API. The Linux network stack “vnet” interface needs to manually configure, and VLAN and other settings if
desired.

• enable|disable Enable or disable the tun/tap driver.

Example: enable

• ethernet|ether Create a tap device (ethernet MAC) instead of a tun device (point-to-point tunnel). The two
keywords are aliases for the same function.

Example: ethernet

• have-normal-interface|have-normal Treat the host Linux stack as a routing peer instead of programming VPP
interface L3 addresses onto the tun/tap devices. The two keywords are aliases for the same function.

Example: have-normal-interface

• name <name> Assign name to the tun/tap device.

Example: name vpp1

Here’s a typical multiple parameter invocation:

tuntap { ethernet have-normal-interface name vpp1 }

“unix” Parameters

Configure VPP startup and behavior type attributes, as well and any OS based attributes.

• interactive Attach CLI to stdin/out and provide a debugging command line interface. Implies nodaemon.

Example: interactive

2.1. Users 37

Vector Packet Processor Documentation, Release 0.1

• nodaemon Do not fork / background the vpp process. Typical when invoking VPP applications from a process
monitor. Set by default in the default ‘startup.conf’ file.

Example: nodaemon

• log <filename> Logs the startup configuration and all subsequent CLI commands in filename. Very useful in
situations where folks don’t remember or can’t be bothered to include CLI commands in bug reports. The
default ‘startup.conf’ file is to write to ‘/var/log/vpp/vpp.log’.

In VPP 18.04, the default log file location was moved from ‘/tmp/vpp.log’ to ‘/var/log/vpp/vpp.log’ . The
VPP code is indifferent to the file location. However, if SELinux is enabled, then the new location is
required for the file to be properly labeled. Check your local ‘startup.conf’ file for the log file location on
your system.

Example: log /var/log/vpp/vpp-debug.log

• exec|startup-config <filename> Read startup operational configuration from filename. The contents of the file
will be performed as though entered at the CLI. The two keywords are aliases for the same function; if
both are specified, only the last will have an effect. The file contains CLI commands, for example:

$ cat /usr/share/vpp/scripts/interface-up.txt
set interface state TenGigabitEthernet1/0/0 up
set interface state TenGigabitEthernet1/0/1 up

Example: startup-config /usr/share/vpp/scripts/interface-up.txt

• gid number|name> Sets the effective group ID to the input group ID or group name of the calling process.

Example: gid vpp

• full-coredump Ask the Linux kernel to dump all memory-mapped address regions, instead of just
text+data+bss.

Example: full-coredump

• coredump-size unlimited|<n>G|<n>M|<n>K|<n> Set the maximum size of the coredump file. The input
value can be set in GB, MB, KB or bytes, or set to ‘unlimited’.

Example: coredump-size unlimited

• cli-listen <ipaddress:port>|<socket-path> Bind the CLI to listen at address localhost on TCP port 5002. This
will accept an ipaddress:port pair or a filesystem path; in the latter case a local Unix socket is opened
instead. The default ‘startup.conf’ file is to open the socket ‘/run/vpp/cli.sock’.

Example: cli-listen localhost:5002 Example: cli-listen /run/vpp/cli.sock

• cli-line-mode Disable character-by-character I/O on stdin. Useful when combined with, for example, emacs
M-x gud-gdb.

Example: cli-line-mode

• cli-prompt <string> Configure the CLI prompt to be string.

Example: cli-prompt vpp-2

• cli-history-limit <n> Limit commmand history to <n> lines. A value of 0 disables command history. Default
value: 50

Example: cli-history-limit 100

38 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

• cli-no-banner Disable the login banner on stdin and Telnet connections.

Example: cli-no-banner

• cli-no-pager Disable the output pager.

Example: cli-no-pager

• cli-pager-buffer-limit <n> Limit pager buffer to <n> lines of output. A value of 0 disables the pager. Default
value: 100000

Example: cli-pager-buffer-limit 5000

• runtime-dir <dir> Set the runtime directory, which is the default location for certain files, like socket files. De-
fault is based on User ID used to start VPP. Typically it is ‘root’, which defaults to ‘/run/vpp/’. Otherwise,
defaults to ‘/run/user/<uid>/vpp/’.

Example: runtime-dir /tmp/vpp

• poll-sleep-usec <n> Add a fixed-sleep between main loop poll. Default is 0, which is not to sleep.

Example: poll-sleep-usec 100

• pidfile <filename> Writes the pid of the main thread in the given filename.

Example: pidfile /run/vpp/vpp1.pid

“vhost-user” Parameters

Vhost-user configuration parameters control the vhost-user driver.

• coalesce-frames <n> Subject to deadline-timer expiration - see next item - attempt to transmit at least <n>
packet frames. Default is 32 frames.

Example: coalesce-frames 64

• coalesce-time <seconds> Hold packets no longer than (floating-point) seconds before transmitting them. De-
fault is 0.001 seconds

Example: coalesce-time 0.002

• dont-dump-memory vhost-user shared-memory segments can add up to a large amount of memory, so it’s
handy to avoid adding them to corefiles when using a significant number of such interfaces.

Example: dont-dump-memory

“vlib” Parameters

• memory-trace TBD

Example: memory-trace

• elog-events <n> TBD

Example: TBD

• elog-post-mortem-dump TBD

Example: elog-post-mortem-dump

2.1. Users 39

Vector Packet Processor Documentation, Release 0.1

2.1.2 FD.io VPP Configuration Utility

Purpose of FD.io VPP Configuration Utility

The FD.io VPP Configuration Utility, or vpp-config, allows the user to configure FD.io VPP in a simple and safe
manner. The utility takes input from the user and then modifies the key configuration files. The user can then examine
these files to be sure they are correct and then actually apply the configuration. The utility also includes an installation
utility and some basic tests.

FD.io VPP Configuration Utility Guide

The following guide provides instructions on how to install, use, and develop vpp-config.

Installing the FD.io VPP Configuration Utility

The installation and executing of the FD.io VPP Configuration Utility, or vpp-config, is simple. First install the python
pip module. Then using pip,

Run as Root

Run the terminal as root

$ sudo -H bash

Afterwards, install the vpp-config utility through the pip command.

pip install vpp-config

Using the FD.io VPP Configuration Utility

vpp-config utility provides the user with a menu that offers a variety of useful features used to configure the devices
which will be used by VPP, hugepages, and allowing VPP to be the only process running on its specified CPU.

FD.io VPP Configuration Tool Main Menu

It is recommended that these menu options are executed in order.

1. Show basic system information

2. Dry Run

3. Full Configuration

4. List/Install/Uninstall VPP

5. Execute some basic tests

40 Chapter 2. Getting Started Guides

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Vector Packet Processor Documentation, Release 0.1

Target Files

The following files will be modified by VPP config: .. code-block:: console

/etc/vpp/startup.conf /etc/sysctl.d/80-vpp.conf /etc/default/grub

Once vpp-config is installed simply type:

vpp-config

Welcome to the VPP system configuration utility

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command:
and answer the questions. If you are not sure what to answer choose the
default.

Configuring FD.io VPP with Default Values

If you do not choose to modify the default for any of the questions prompted by vpp-config, you may press the ENTER
key to select the default options:

• Questions that ask [Y/n], the capital letter Y is the default answer.

• Numbers have their default within brackets, such as in [1024], the 1024 is the default.

Command 1. Show System Information

Before Configuration

When the utility is first started we can show the basic system information.

vpp-config

Welcome to the VPP system configuration utility

These are the files we will modify:
/etc/vpp/startup.conf
/etc/sysctl.d/80-vpp.conf
/etc/default/grub

Before we change them, we'll create working copies in /usr/local/vpp/vpp-config/dryrun
Please inspect them carefully before applying the actual configuration (option 3)!

2.1. Users 41

Vector Packet Processor Documentation, Release 0.1

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1

==============================
NODE: DUT1

CPU:
Model name: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz

CPU(s): 32
Thread(s) per core: 2
Core(s) per socket: 8

Socket(s): 2
NUMA node0 CPU(s): 0-7,16-23
NUMA node1 CPU(s): 8-15,24-31

CPU max MHz: 3600.0000
CPU min MHz: 1200.0000

SMT: Enabled

VPP Threads: (Name: Cpu Number)

Grub Command Line:
Current: BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-

→˓9815-db8d479a3557 ro
Configured: GRUB_CMDLINE_LINUX_DEFAULT=""

Huge Pages:
Total System Memory : 65863484 kB
Total Free Memory : 56862700 kB
Actual Huge Page Total : 1024
Configured Huge Page Total : 1024
Huge Pages Free : 1024
Huge Page Size : 2048 kB

Devices:

Devices with link up (can not be used with VPP):
0000:08:00.0 enp8s0f0 I350 Gigabit Network Connection

Devices bound to kernel drivers:
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network
→˓Connection

(continues on next page)

42 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network
→˓Connection

No devices bound to DPDK drivers

VPP Service Status:
Not Installed

==============================

After Configuration

When we show the system information after the system is configured notice that the VPP workers and the VPP main
core is on the correct Numa Node. Notice also that VPP is running and the interfaces are shown.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1
==============================
NODE: DUT1

CPU:
Model name: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz

CPU(s): 72
Thread(s) per core: 2
Core(s) per socket: 18

Socket(s): 2
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71

CPU max MHz: 3700.0000
CPU min MHz: 1000.0000

SMT: Enabled

VPP Threads: (Name: Cpu Number)
vpp_main : 0
vpp_stats : 0

Grub Command Line:
Current: BOOT_IMAGE=/vmlinuz-3.10.0-693.21.1.el7.x86_64 root=UUID=cc995b4c-3c20-4ca5-
→˓ae26-d6ed364af63f ro crashkernel=auto biosdevname=0 net.ifnames=0 rhgb quiet intel_
→˓iommu=on
Configured: GRUB_CMDLINE_LINUX="crashkernel=auto biosdevname=0 net.ifnames=0 rhgb
→˓quiet intel_iommu=on"

(continues on next page)

2.1. Users 43

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

Huge Pages:
Total System Memory : 196583908 kB
Total Free Memory : 113683588 kB
Actual Huge Page Total : 4096
Configured Huge Page Total : 8192
Huge Pages Free : 3960
Huge Page Size : 2048 kB

Devices:

Devices with link up (can not be used with VPP):
0000:3d:00.0 eth2 Ethernet Connection X722 for 10GBASE-T

Devices bound to kernel drivers:
0000:3d:00.1 eth3 Ethernet Connection X722 for 10GBASE-T
0000:18:02.1 eth7 Ethernet Virtual Function 700 Series
0000:18:02.0 eth6 Ethernet Virtual Function 700 Series
0000:18:02.3 eth9 Ethernet Virtual Function 700 Series
0000:18:02.2 eth8 Ethernet Virtual Function 700 Series
0000:18:00.0 eth0 Ethernet Controller XXV710 for 25GbE SFP28
0000:86:00.0 eth4 Ethernet Controller XXV710 for 25GbE SFP28
0000:86:00.1 eth5 Ethernet Controller XXV710 for 25GbE SFP28

No devices bound to DPDK drivers

VPP Service Status:
activating (auto

==============================

Command 2. Dry Run

With VPP installed we can now execute a configuration dry run. This option will create the configuration files and put
them in a dryrun directory. This directory is located for Ubuntu in /usr/local/vpp/vpp-config/dryrun and for Centos
in /usr/vpp/vpp-config/dryrun. These files should be examined to be sure that they are valid before actually applying
the configuration with option 3.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 2

These device(s) are currently NOT being used by VPP or the OS.

PCI ID Description
(continues on next page)

44 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to give any of these devices back to the OS [Y/n]? y
Would you like to use device 0000:86:00.0 for the OS [y/N]? y
Would you like to use device 0000:86:00.1 for the OS [y/N]? y

These devices have kernel interfaces, but appear to be safe to use with VPP.

PCI ID Kernel Interface(s) Description
--
→˓----
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network
→˓Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network
→˓Connection
0000:86:00.0 enp134s0f0 82599ES 10-Gigabit SFI/SFP+ Network
→˓Connection
0000:86:00.1 enp134s0f1 82599ES 10-Gigabit SFI/SFP+ Network
→˓Connection

Would you like to use any of these device(s) for VPP [y/N]? y
Would you like to use device 0000:90:00.0 for VPP [y/N]?
Would you like to use device 0000:8f:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.1 for VPP [y/N]?
Would you like to use device 0000:08:00.1 for VPP [y/N]?
Would you like to use device 0000:02:00.0 for VPP [y/N]?
Would you like to use device 0000:02:00.1 for VPP [y/N]?
Would you like to use device 0000:86:00.0 for VPP [y/N]? y
Would you like to use device 0000:86:00.1 for VPP [y/N]? y

These device(s) will be used by VPP.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to remove any of these device(s) [y/N]?

These device(s) will be used by VPP, please rerun this option if this is incorrect.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Your system has 32 core(s) and 2 Numa Nodes.
To begin, we suggest not reserving any cores for VPP or other processes.
Then to improve performance try reserving cores as needed.

(continues on next page)

2.1. Users 45

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

How many core(s) do you want to reserve for processes other than VPP? [0-16][0]?
How many core(s) shall we reserve for VPP workers[0-4][0]? 2
Should we reserve 1 core for the VPP Main thread? [y/N]? y

How many active-open / tcp client sessions are expected [0-10000000][0]?
How many passive-open / tcp server sessions are expected [0-10000000][0]?

There currently 1024 2048 kB huge pages free.
Do you want to reconfigure the number of huge pages [y/N]? y

There currently a total of 1024 huge pages.
How many huge pages do you want [1024 - 19414][1024]? 8192

Command 3. Apply Full Configuration

After the configuration files have been examined we can apply the configuration with option 3. Notice the default is
NOT to change the grub command line. If the option to change the grub command line is selected a reboot will be
required.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 3

We are now going to configure your system(s).

Are you sure you want to do this [Y/n]? y
These are the changes we will apply to
the huge page file (/etc/sysctl.d/80-vpp.conf).

1,2d0
< vm.nr_hugepages=1024
4,7c2,3
< vm.max_map_count=3096

> vm.nr_hugepages=8192
> vm.max_map_count=17408
8a5
> kernel.shmmax=17179869184
10,15d6
< kernel.shmmax=2147483648

Are you sure you want to apply these changes [Y/n]?
These are the changes we will apply to

(continues on next page)

46 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

the VPP startup file (/etc/vpp/startup.conf).

>
> main-core 8
> corelist-workers 9-10
>
> scheduler-policy fifo
> scheduler-priority 50
>
67,68c56,66
< # dpdk {

> dpdk {
>
> dev 0000:86:00.0 {
> num-rx-queues 2
> }
> dev 0000:86:00.1 {
> num-rx-queues 2
> }
> num-mbufs 25600
>
124c122
< # }

> }

Are you sure you want to apply these changes [Y/n]?

The configured grub cmdline looks like this:
GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=8,9-10 nohz_full=8,9-10 rcu_nocbs=8,9-10"

The current boot cmdline looks like this:
BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-
→˓db8d479a3557 ro

Do you want to keep the current boot cmdline [Y/n]?

Command 4. List/Install/Uninstall VPP

Notice when the basic system information was shown, VPP was not installed.

VPP Service Status:
Not Installed

==============================

We can now install FD.io VPP with option 4

vpp-config

What would you like to do?

1) Show basic system information

(continues on next page)

2.1. Users 47

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 4

There are no VPP packages on node localhost.
Do you want to install VPP [Y/n]? y
INFO:root: Local Command: ls /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: Local Command: rm /etc/apt/sources.list.d/99fd.io.list
INFO:root: Local Command: echo "deb [trusted=yes] https://nexus.fd.io/content/
→˓repositories/fd.io.ubuntu.xenial.main/ ./
" | sudo tee /etc/apt/sources.list.d/99fd.io.list
INFO:root: deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.
→˓xenial.main/ ./
.......

Command 5. Execute Basic tests

Set IPv4 Addresses

Once VPP is configured we can add some ip addresses to the configured interfaces. Once this is done
you should be able to ping the configured addresses and VPP is ready to use. After this option, is
run a script is created in /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up for Ubuntu and /usr/vpp/vpp-
config/scripts/set_int_ipv4_and_up *for **Centos*. This script can be used to configure the ip addresses in the future.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for
→˓inspection)

and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 5

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:

(continues on next page)

48 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

TenGigabitEthernet86/0/0 Not Set dn
TenGigabitEthernet86/0/1 Not Set dn

Would you like to keep this configuration [Y/n]? n
Would you like add address to interface TenGigabitEthernet86/0/0 [Y/n]?
Please enter the IPv4 Address [n.n.n.n/n]: 30.0.0.2/24
Would you like add address to interface TenGigabitEthernet86/0/1 [Y/n]? y
Please enter the IPv4 Address [n.n.n.n/n]: 40.0.0.2/24

A script as been created at /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up
This script can be run using the following:
vppctl exec /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 30.0.0.2/24 up
TenGigabitEthernet86/0/1 40.0.0.2/24 up

Would you like to keep this configuration [Y/n]?

Developers section to vpp-config

Modifying the code is reasonable simple. Edit and debug the code from the root directory. In order to do this, we need
a script that will copy or data files to the proper place. This is where they end up with pip install.

On Ubuntu, the root directory is found by:

cd /usr/local/vpp/vpp-config

On Centos, the root directory is found by:

cd /usr/vpp/vpp-config

Script: Clean the Environment

Run this script to clean the environment.

./scripts/clean.sh

Note: This allows the developer to start from scratch.

Script: Copying Relevant Files

Run this script to copy the relevant files correctly:

2.1. Users 49

Vector Packet Processor Documentation, Release 0.1

./scripts/cp-data.sh

Steps to Run the Utility

These are the steps to run the utility in this environment. The scripts are meant to be run from the root directory.

./scripts/clean.sh
./scripts/cp-data.sh
./vpp_config.py

When the utility is installed with pip the wrapper scripts/vpp-config is written to /usr/local/bin. However, the starting
point when debugging this script locally is

./vpp_config.py

Run the utility by executing (from the root directory)

./vpp_config.py

The start point in the code is in vpp_config.py. Most of the work is done in the files in ./vpplib

Uploading to PyPi

To upload this utility to PyPi, simply do the following:

Note: Currently, I have my own account. When we want everyone to contribute we will need to change that.

$ sudo -H bash
cd vpp_config
python setup.py sdist bdist_wheel
twine upload dist/*

2.1.3 Writing VPP Documentation

Building VPP Documents

Overview

These instructions show how the VPP documentation sources are built.

FD.io VPP Documentation uses reStructuredText (rst) files, which are used by Sphinx. We will also cover how to view
your build on Read the Docs in Using Read the Docs.

To build your files, you can either Create a Virtual Environment using virtualenv, which installs all the required
applications for you, or you can Install Sphinx manually.

50 Chapter 2. Getting Started Guides

http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
http://www.sphinx-doc.org/en/master/

Vector Packet Processor Documentation, Release 0.1

Create a Virtual Environment using virtualenv

For more information on how to use the Python virtual environment check out Installing packages using pip and
virtualenv.

Get the Documents

For example start with a clone of the vpp-docs.

$ git clone https://github.com/fdioDocs/vpp-docs
$ cd vpp-docs/docs

Install the virtual environment

In your vpp-docs directory, run:

$ python -m pip install --user virtualenv
$ python -m virtualenv env
$ source env/bin/activate
$ pip install -r etc/requirements.txt

Which installs all the required applications into it’s own, isolated, virtual environment, so as to not interfere with other
builds that may use different versions of software.

Build the html files

Be sure you are in your vpp-docs/docs directory, since that is where Sphinx will look for your conf.py file, and build
the .rst files into an index.html file:

$ make html

View the results

If there are no errors during the build process, you should now have an index.html file in your
vpp-docs/docs/_build/html directory, which you can then view in your browser.

Whenever you make changes to your .rst files that you want to see, repeat this build process.

2.1. Users 51

https://packaging.python.org/guides/installing-using-pip-and-virtualenv/
https://packaging.python.org/guides/installing-using-pip-and-virtualenv/

Vector Packet Processor Documentation, Release 0.1

Note: To exit from the virtual environment execute:

$ deactivate

Install Sphinx manually

Skip this step if you created a virtualenv in the previous step. If you dont want to create a virtualenv, you should install
Sphinx here, and follow their getting started guide.

Building these files will generate an index.html file, which you can then view in your browser to verify and see your
file changes.

To build your files, make sure you’re in your vpp-docs/docs directory, where your conf.py file is located, and run:

$ make html

If there are no errors during the build process, you should now have an index.html file in your
vpp-docs/docs/_build/html directory, which you can then view in your browser.

Whenever you make changes to your .rst files that you want to see, repeat this build process.

Using Read the Docs

Read the Docs is a website that “simplifies software documentation by automating building, versioning, and hosting
of your docs for you”. Essentially, it accesses your Github repo to generate the index.html file, and then displays it
on its own Read the Docs webpage so others can view your documentation.

Create an account on Read the Docs if you haven’t already.

Go to your dashboard , and click on “Import a Project”.

Fig. 1: This will bring you to a page where you can choose to import
a repo from your Github account (only if you’ve linked your Github
account to your Read the Docs account), or to import a repo manually.
In this example, we’ll do it manually. Click “Import Manually”.

52 Chapter 2. Getting Started Guides

http://www.sphinx-doc.org/en/master/usage/installation.html
http://www.sphinx-doc.org/en/master/usage/quickstart.html
https://readthedocs.org/
https://readthedocs.org/dashboard/

Vector Packet Processor Documentation, Release 0.1

This will bring you to a page that asks
for your repo details. Set “Name” to
your forked repo name, or whatever you
want. Set “Repository URL” to the URL
of your forked repo (https://github.com/

YOURUSERNAME/vpp-docs). “Repository type” should already be selected to “Git”. Then click “Next”.

This will bring you to a project page of your repo on Read the Docs. You
can confirm it’s the correct repo by checking on the right side of the page
the Repository URL.

Then click on “Build Version”.

2.1. Users 53

https://github.com/YOURUSERNAME/vpp-docs
https://github.com/YOURUSERNAME/vpp-docs

Vector Packet Processor Documentation, Release 0.1

Which takes you to another page showing
your recent builds.

Then click on “Build Version:”. This
should “Trigger” a build. After about
a minute or so you can refresh the
page and see that your build “Passed”.

54 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Now on your builds page from the previous image,
you can click “View Docs” at the top-right, which will
take you a readthedocs.io page of your generated build!

Pushing your changes to the VPP Docs Repository

Overview

This section will cover how to fork your own branch of the
fdioDocs/vpp-docs repository, clone that repo locally to your computer,
make changes to it, and how to issue a pull request when you want your
changes to be reflected on the main repo.

Forking your own branch

In your browser, navigate to the repo you want to branch off of. In this
case, the fdioDocs/vpp-docs repo. At the top right of the page you should see this:

Click on “Fork”, and then a pop-up should appear where you should then
click your Github username. Once this is done, it should automatically
take you to the Github page where your new branch is located, just like
in the image below.

Now your own branch can be cloned to your computer using the URL
(https://github.com/YOURUSERNAME/vpp-docs) of the Github page where your branch is located.

2.1. Users 55

https://github.com/fdioDocs/vpp-docs
https://github.com/fdioDocs/vpp-docs
https://github.com/YOURUSERNAME/vpp-docs

Vector Packet Processor Documentation, Release 0.1

Creating a local repository

Now that you have your own branch of the main repository on Github, you can store it locally on your computer. In
your shell, navigate to the directory where you want to store your branch/repo. Then execute:

$ git clone https://github.com/YOURUSERNAME/vpp-docs

This will create a directory on your computer named vpp-docs, the name of the repo.

Now that your branch is on your computer, you can modify and build files however you wish.

If you are not on the master branch, move to it.

$ git checkout master

Keeping your files in sync with the main repo

The following talks about remote branches, but keep in mind that there are currently two branches, your local “master”
branch (on your computer), and your remote “origin or origin/master” branch (the one you created using “Fork” on
the Github website).

You can view your remote repositories with:

$ git remote -v

At this point, you may only see the remote branch that you cloned from.

Macintosh:docs Andrew$ git remote -v
origin https://github.com/a-olechtchouk/vpp-docs (fetch)
origin https://github.com/a-olechtchouk/vpp-docs (push)

Now you want to create a new remote repository of the main vpp-docs repo (naming it upstream).

$ git remote add upstream https://github.com/fdioDocs/vpp-docs

You can verify that you have added a remote repo using the previous git remote -v command.

$ git remote -v
origin https://github.com/a-olechtchouk/vpp-docs (fetch)
origin https://github.com/a-olechtchouk/vpp-docs (push)
upstream https://github.com/fdioDocs/vpp-docs (fetch)
upstream https://github.com/fdioDocs/vpp-docs (push)

If there have been any changes to files in the main repo (hopefully not the same files you were working on!), you want
to make sure your local branch is in sync with them.

To do so, fetch any changes that the main repo has made, and then merge them into your local master branch using:

$ git fetch upstream
$ git merge upstream/master

Note: This is optional, so don’t do these commands if you just want one local branch!!!

You may want to have multiple branches, where each branch has its own different features, allowing you to have
multiple pull requests out at a time. To create a new local branch:

56 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

$ git checkout -b cleanup-01
$ git branch

* cleanup-01
master
overview

Now you can redo the previous steps for "Keeping your files in sync with the main repo
→˓" for your newly created local branch, and then depending on which branch you want
→˓to send out a pull reqest for, proceed below.

Pushing to your branch

Now that your files are in sync, you want to add modified files, commit, and push them from your local branch to your
personal remote branch (not the main fdioDocs repo).

To check the status of your files, run:

$ git status

In the output example below, I deleted gettingsources.rst, made changes to index.rst and pushingapatch.rst, and have
created a new file called buildingrst.rst.

Macintosh:docs Andrew$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

deleted: tasks/writingdocs/gettingsources.rst

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: tasks/writingdocs/index.rst
modified: tasks/writingdocs/pushingapatch.rst

Untracked files:
(use "git add <file>..." to include in what will be committed)

tasks/writingdocs/buildingrst.rst

To add files (use git add -A to add all modified files):

$ git add FILENAME1 FILENAME2

Commit and push using:

$ git commit -m 'A descriptive commit message for two files.'

Push your changes for the branch where your changes were made

$ git push origin <branch name>

Here, your personal remote branch is “origin” and your local branch is “master”.

2.1. Users 57

Vector Packet Processor Documentation, Release 0.1

Note: Using git commit after adding your files saves a “Snapshot” of them, so it’s very hard to lose your work if you
commit often.

Initiating a pull request (Code review)

Once you’ve pushed your changes to your remote branch, go to your remote branch on Github (https://github.com/
YOURUSERNAME/vpp-docs), and click on “New pull request”.

This will bring you to a “Comparing changes” page. Click “Create new pull request”.

Which will open up text fields to add information to your pull request.

Fig. 2: Then finally click “Create pull request” to complete the pull request.

Your documents will be reviewed. To this same branch make the changes requested from the review and then push
your new changes. There is no need to create another pull request.

$ git commit -m 'A descriptive commit message for the new changes'
$ git push origin <branch name>

58 Chapter 2. Getting Started Guides

https://github.com/YOURUSERNAME/vpp-docs
https://github.com/YOURUSERNAME/vpp-docs

Vector Packet Processor Documentation, Release 0.1

Additional Git commands

You may find some of these Git commands useful:

Use git diff to quickly show the file changes and repo differences of your commits.

Use git rm FILENAME to stop tracking a file and to remove it from your remote branch and local directory. Use flag
-r to remove folders/directories. E.g (git rm -r oldfolder)

reStructured Text Style Guide

Most of the these documents are written ins reStructured Text (rst). This chapter describes some of the Sphinx Markup
Constructs used in these documents. The Sphinx style guide can be found at: Sphinx Style Guide For a more detailed
list of Sphinx Markup Constructs please refer to: Sphinx Markup Constructs

This document is also an example of a directory structure for a document that spans mutliple pages. Notice we have
the file index.rst and the then documents that are referenced in index.rst. The referenced documents are shown at the
bottom of this page.

A label is shown at the top of this page. Then the first construct describes a the document title FD.io Style Guide.
Text usually follows under each title or heading.

A Table of Contents structure is shown below. Using toctree in this way will show the headings in a nicely in the
generated documents.

Heading 1

This is the top heading level. More levels are shown below.

Heading 2

Heading 3

Heading 4

Heading 5

Bullets, Bold and Italics

Bold text can be show with Bold Text, Italics with Italic text. Bullets like so:

• Bullet 1

• Bullet 2

Notes

A note can be used to describe something not in the normal flow of the paragragh. This is an example of a note.

Note: Using git commit after adding your files saves a “Snapshot” of them, so it’s very hard to lose your work if you
commit often.

2.1. Users 59

http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html
http://www.sphinx-doc.org/en/stable/markup/index.html

Vector Packet Processor Documentation, Release 0.1

Code Blocks

This paragraph describes how to do Console Commands. When showing VPP commands it is reccomended that the
command be executed from the linux console as shown. The Highlighting in the final documents shows up nicely this
way.

$ sudo bash
vppctl show interface

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213

rx bytes 9928352943
tx packets 50384
tx bytes 3329279

TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384

rx bytes 3329279
tx packets 6569213
tx bytes 9928352943
drops 1498

local0 0 down
#

The code-block construct is also used for code samples. The following shows how to include a block of “C” code.

#include <vlib/unix/unix.h>
abf_policy_t *
abf_policy_get (u32 index)
{

return (pool_elt_at_index (abf_policy_pool, index));
}

Diffs are generated in the final docs nicely with “::” at the end of the description like so:

diff --git a/src/vpp/vnet/main.c b/src/vpp/vnet/main.c
index 6e136e19..69189c93 100644
--- a/src/vpp/vnet/main.c
+++ b/src/vpp/vnet/main.c
@@ -18,6 +18,8 @@
#include <vlib/unix/unix.h>
#include <vnet/plugin/plugin.h>
#include <vnet/ethernet/ethernet.h>

+#include <vnet/ip/ip4_packet.h>
+#include <vnet/ip/format.h>
#include <vpp/app/version.h>
#include <vpp/api/vpe_msg_enum.h>
#include <limits.h>

@@ -400,6 +402,63 @@ VLIB_CLI_COMMAND (test_crash_command, static) = {

#endif

Tables

There are two types of tables with different syntax, Grid Tables, and Simple Tables.

60 Chapter 2. Getting Started Guides

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables

Vector Packet Processor Documentation, Release 0.1

Grid Tables

Grid Tables are described with a visual grid made up of the characters “-“, “=”, “|”, and “+”. The hyphen (“-“) is
used for horizontal lines (row separators). The equals sign (“=”) may be used to separate optional header rows from
the table body. The vertical bar (“|”) is used for vertical lines (column separators). The plus sign (“+”) is used for
intersections of horizontal and vertical lines.

Here is example code for a grid table in a .rst file:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | Cells may span columns. |
+------------------------+------------+---------------------+
| body row 3 | Cells may | - Table cells |
+------------------------+ span rows. | - contain |
| body row 4 | | - body elements. |
+------------------------+------------+---------------------+

This example code generates a grid table that looks like this:

Header row, column 1
(header rows optional)

Header 2 Header 3 Header 4

body row 1, column 1 column 2 column 3 column 4
body row 2 Cells may span columns.
body row 3 Cells may span rows. • Table cells

• contain
• body elements.body row 4

Simple Tables

Simple tables are described with horizontal borders made up of “=” and “-” characters. The equals sign (“=”) is used
for top and bottom table borders, and to separate optional header rows from the table body. The hyphen (“-“) is used
to indicate column spans in a single row by underlining the joined columns, and may optionally be used to explicitly
and/or visually separate rows.

Simple tables are “simpler” to create than grid tables, but are more limited.

Here is example code for a simple table in a .rst file.

===== ===== =======
A B A and B

===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

This example code generates a simple table that looks like this:

2.1. Users 61

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables

Vector Packet Processor Documentation, Release 0.1

A B A and B
False False False
True False False
False True False
True True True

Labels, References

A link or reference to other paragraphs within these documents can be done with following construct.

In this example the reference points the label showintcommand. The label styleguide03 is shown at the top of this
page. A label used in this way must be above a heading or title.

Show Interface command.

External Links

An external link is done with the following construct:

Sphinx Markup Constructs

Images

Images should be placed in the directory docs/_images. They can then be referenced with following construct. This is
the image created to show a pull request.

Including a file

A complete file should be included with the following construct. It is recomended it be included with it’s own .rst file
describing the file included. This is an example of an xml file is included.

An XML File

An example of an XML file.

62 Chapter 2. Getting Started Guides

http://www.sphinx-doc.org/en/stable/markup/index.html

Vector Packet Processor Documentation, Release 0.1

<domain type='kvm' id='54'>
<name>iperf-server</name>
<memory unit='KiB'>1048576</memory>
<currentMemory unit='KiB'>1048576</currentMemory>
<memoryBacking>
<hugepages>

<page size='2048' unit='KiB'/>
</hugepages>

</memoryBacking>
<vcpu placement='static'>1</vcpu>
<resource>
<partition>/machine</partition>

</resource>
<os>
<type arch='x86_64' machine='pc-i440fx-xenial'>hvm</type>
<boot dev='hd'/>

</os>
<features>
<acpi/>
<apic/>

</features>
<cpu mode='host-model'>
<model fallback='allow'></model>
<numa>

<cell id='0' cpus='0' memory='262144' unit='KiB' memAccess='shared'/>
</numa>

</cpu>
<clock offset='utc'>
<timer name='rtc' tickpolicy='catchup'/>
<timer name='pit' tickpolicy='delay'/>
<timer name='hpet' present='no'/>

</clock>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<pm>
<suspend-to-mem enabled='no'/>
<suspend-to-disk enabled='no'/>

</pm>
<devices>
<emulator>/usr/bin/kvm</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='qcow2'/>
<source file='/tmp/xenial-mod.img'/>
<backingStore/>
<target dev='vda' bus='virtio'/>
<alias name='virtio-disk0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>

</disk>
<disk type='file' device='cdrom'>

<driver name='qemu' type='raw'/>
<source file='/scratch/jdenisco/sae/configs/cloud-config.iso'/>
<backingStore/>
<target dev='hda' bus='ide'/>
<readonly/>
<alias name='ide0-0-0'/>
<address type='drive' controller='0' bus='0' target='0' unit='0'/>

(continues on next page)

2.1. Users 63

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

</disk>
<controller type='usb' index='0' model='ich9-ehci1'>

<alias name='usb'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x7'/>

</controller>
<controller type='pci' index='0' model='pci-root'>
<alias name='pci.0'/>

</controller>
<controller type='ide' index='0'>

<alias name='ide'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

</controller>
<controller type='virtio-serial' index='0'>

<alias name='virtio-serial0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</controller>
<interface type='vhostuser'>

<mac address='52:54:00:4c:47:f2'/>
<source type='unix' path='/tmp//vm00.sock' mode='server'/>
<model type='virtio'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

</interface>
<serial type='pty'>

<source path='/dev/pts/2'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/2'>
<source path='/dev/pts/2'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>
<input type='mouse' bus='ps2'/>
<input type='keyboard' bus='ps2'/>
<graphics type='vnc' port='5900' autoport='yes' listen='127.0.0.1'>
<listen type='address' address='127.0.0.1'/>

</graphics>
<memballoon model='virtio'>

<alias name='balloon0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/>

</memballoon>
</devices>
<seclabel type='dynamic' model='apparmor' relabel='yes'>
<label>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</label>
<imagelabel>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</imagelabel>

</seclabel>
</domain>

Raw HTML

An html frame can be included with the following construct. It is recommended that references to raw html be included
with it’s own .rst file.

64 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Raw HTML Example

This example shows how to include include a CSIT performance graph.

Markdown Style Guide

Most of these documents are written using reStructured Text Style Guide (rst), but pages can also be written in Mark-
down. This chapter describes some constructs used to write these documents. For a more detailed description of
Markdown refer to Markdown Wikipedia

Heading 1

This is the top heading level. More levels are shown below.

Heading 2

Heading 3

Heading 4

Heading 5

Bullets, Bold and Italics

Bold text can be show with Bold Text, Italics with Italic text. Bullets like so:

• Bullet 1

• Bullet 2

Code Blocks

This paragraph describes how to do Console Commands. When showing VPP commands it is reccomended that the
command be executed from the linux console as shown. The Highlighting in the final documents shows up nicely this
way.

$ sudo bash
vppctl show interface

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213

rx bytes 9928352943
tx packets 50384
tx bytes 3329279

TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384

rx bytes 3329279
tx packets 6569213
tx bytes 9928352943
drops 1498

local0 0 down
#

2.1. Users 65

https://en.wikipedia.org/wiki/Markdown

Vector Packet Processor Documentation, Release 0.1

The code-block construct is also used for code samples. The following shows how to include a block of “C” code.

#include <vlib/unix/unix.h>
abf_policy_t *
abf_policy_get (u32 index)
{

return (pool_elt_at_index (abf_policy_pool, index));
}

Diffs are generated in the final docs nicely with “:” at the end of the description like so:

diff --git a/src/vpp/vnet/main.c b/src/vpp/vnet/main.c
index 6e136e19..69189c93 100644
--- a/src/vpp/vnet/main.c
+++ b/src/vpp/vnet/main.c
@@ -18,6 +18,8 @@
#include <vlib/unix/unix.h>
#include <vnet/plugin/plugin.h>
#include <vnet/ethernet/ethernet.h>

+#include <vnet/ip/ip4_packet.h>
+#include <vnet/ip/format.h>
#include <vpp/app/version.h>
#include <vpp/api/vpe_msg_enum.h>
#include <limits.h>

@@ -400,6 +402,63 @@ VLIB_CLI_COMMAND (test_crash_command, static) = {

#endif

Labels, References

A link or reference to other paragraphs within these documents can be done with following construct.

External Links

An external link is done with the following construct:

Sphinx Markup Constructs

Images

Images should be placed in the directory docs/_images. They can then be referenced with following construct. This is
the image created to show a pull request.

66 Chapter 2. Getting Started Guides

http://www.sphinx-doc.org/en/stable/markup/index.html

Vector Packet Processor Documentation, Release 0.1

To Do

This section describes pieces of these documents that need some work.

All Sections

All the sections need to be spell checked.

Checked for guidelines.

FD.io VPP with Virtual Machines

Topology

Get a better topology picture.

Creating the Virtual Machine

The XML file refers to an iso image, come up with a procedure to build that image. That should work when used with
a cloud image. It should also be mentioned where to get a cloud image.

It is mentioned that a queue size of 256 is not large enough. Come up wit a procedure to change the queue size.

How to Report an Issue

Move the reporting issues section to troublshooting

2.1. Users 67

Vector Packet Processor Documentation, Release 0.1

Writing VPP Documentation

Move the writing docs section out of getting started user guides.

Basic Configuration

Create a Basic configuration section and put startup.conf and huge pages in it.

Users

The getting started users guide needs an overview

Command Line Reference

This section should be references to the doxygen links. The doxygen links will need to be cleaned up. This section
could be a quick reference only using commands we have tested.

Progressive VPP Tutorial

This section needs work. It needs to be split up and tested.

vSwitch/vRouter

Needs some instructions or be removed.

Downloading the jvpp jar

Not sure what value this provides.

2.1.4 How to Report an Issue

Reporting Bugs

Although every situation is different, this page describes how to collect data which will help make efficient use of
everyone’s time when dealing with vpp bugs.

Before you press the Jira button to create a bug report - or email vpp-dev@lists.fd.io - please ask yourself whether
there’s enough information for someone else to understand and possibly to reproduce the issue given a reasonable
amount of effort. Unicast emails to maintainers, committers, and the project PTL are strongly discouraged.

A good strategy for clear-cut bugs: file a detailed Jira ticket, and then send a short description of the issue to vpp-
dev@lists.fd.io, perhaps from the Jira ticket description. It’s fine to send email to vpp-dev@lists.fd.io to ask a few
questions before filing Jira tickets.

68 Chapter 2. Getting Started Guides

mailto:vpp-dev@lists.fd.io
mailto:vpp-dev@lists.fd.io
mailto:vpp-dev@lists.fd.io
mailto:vpp-dev@lists.fd.io

Vector Packet Processor Documentation, Release 0.1

Data to include in bug reports

Image version and operating environment

Please make sure to include the vpp image version and command-line arguments.

$ sudo bash
vppctl show version verbose cmdline
Version: v18.07-rc0~509-gb9124828
Compiled by: vppuser
Compile host: vppbuild
Compile date: Fri Jul 13 09:05:37 EDT 2018
Compile location: /scratch/vpp-showversion
Compiler: GCC 7.3.0
Current PID: 5211
Command line arguments:

/scratch/vpp-showversion/build-root/install-vpp_debug-native/vpp/bin/vpp
unix
interactive

With respect to the operating environment: if misbehavior involving a specific VM / container / bare-metal environ-
ment is involved, please describe the environment in detail:

• Linux Distro (e.g. Ubuntu 14.04.3 LTS, CentOS-7, etc.)

• NIC type(s) (ixgbe, i40e, enic, etc. etc.), vhost-user, tuntap

• NUMA configuration if applicable

Please note the CPU architecture (x86_86, aarch64), and hardware platform.

When practicable, please report issues against released software, or unmodified master/latest software.

“Show” command output

Every situation is different. If the issue involves a sequence of debug CLI command, please enable CLI command
logging, and send the sequence involved. Note that the debug CLI is a developer’s tool - no warranty express or
implied - and that we may choose not to fix debug CLI bugs.

Please include “show error” [error counter] output. It’s often helpful to “clear error”, send a bit of traffic, then “show
error” particularly when running vpp on a noisy networks.

Please include ip4 / ip6 / mpls FIB contents (“show ip fib”, “show ip6 fib”, “show mpls fib”, “show mpls tunnel”).

Please include “show hardware”, “show interface”, and “show interface address” output

Here is a consolidated set of commands that are generally useful before/after sending traffic. Before sending traffic.

vppctl clear hardware
vppctl clear interface
vppctl clear error
vppctl clear run

Send some traffic and then issue the following commands.

vppctl show version verbose
vppctl show hardware
vppctl show hardware address
vppctl show interface

(continues on next page)

2.1. Users 69

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

vppctl show run
vppctl show error

Here are some protocol specific show commands that may also make sense. Only include those features which have
been configured.

vppctl show l2fib
vppctl show bridge-domain

vppctl show ip fib
vppctl show ip arp

vppctl show ip6 fib
vppctl show ip6 neighbors

vppctl show mpls fib
vppctl show mpls tunnel

Network Topology

Please include a crisp description of the network topology, including L2 / IP / MPLS / segment-routing addressing
details. If you expect folks to reproduce and debug issues, this is a must.

At or above a certain level of topological complexity, it becomes problematic to reproduce the original setup.

Packet Tracer Output

If you capture packet tracer output which seems relevant, please include it.

vppctl trace add dpdk-input 100 # or similar

send-traffic

vppctl show trace

Capturing post-mortem data

It should go without saying, but anyhow: please put post-mortem data in obvious, accessible places. Time wasted
trying to acquire accounts, credentials, and IP addresses simply delays problem resolution.

Please remember to add post-mortem data location information to Jira tickets.

Syslog Output

The vpp signal handler typically writes a certain amount of data in /var/log/syslog before exiting. Make sure to check
for evidence, e.g via “grep /usr/bin/vpp /var/log/syslog” or similar.

70 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Binary API Trace

If the issue involves a sequence of control-plane API messages - even a very long sequence - please enable control-
plane API tracing. Control-plane API post-mortem traces end up in /tmp/api_post_mortem.<pid>.

Please remember to put post-mortem binary api traces in accessible places.

These API traces are especially helpful in cases where the vpp engine is throwing traffic on the floor, e.g. for want of
a default route or similar.

Make sure to leave the default stanza “. . . api-trace { on } . . . ” in the vpp startup configuration file
/etc/vpp/startup.conf, or to include it in the command line arguments passed by orchestration software.

Core Files

Production systems, as well as long-running pre-production soak-test systems, must arrange to collect core images.
There are various ways to configure core image capture, including e.g. the Ubuntu “corekeeper” package. In a pinch,
the following very basic sequence will capture usable vpp core files in /tmp/dumps.

mkdir -p /tmp/dumps
sysctl -w debug.exception-trace=1
sysctl -w kernel.core_pattern="/tmp/dumps/%e-%t"
ulimit -c unlimited
echo 2 > /proc/sys/fs/suid_dumpable

Vpp core files often appear enormous. Gzip typically compresses them to manageable sizes. A multi-GByte corefile
often compresses to 10-20 Mbytes.

Please remember to put compressed core files in accessible places.

Make sure to leave the default stanza “. . . unix { . . . full-coredump . . . } . . . ” in the vpp startup configuration file
/etc/vpp/startup.conf, or to include it in the command line arguments passed by orchestration software.

Core files from private, modified images are discouraged. If it’s necessary to go that route, please copy the exact
Debian packages (or RPMs) corresponding to the core file to the same public place as the core file. In particular.

• vpp_<version>_<arch>.deb # the vpp executable

• vpp-dbg_<version>_<arch>.deb # debug symbols

• vpp-dev_<version>_<arch>.deb # development package

• vpp-lib_<version>_<arch>.deb # shared libraries

• vpp-plugins_<version>_<arch>.deb # plugins

Please include the full commit-ID the Jira ticket.

If we go through the setup process only to discover that the image and core files don’t match, it will simply delay
resolution of the issue. And it will annoy the heck out of the engineer who just wasted their time. Exact means exact,
not “oh, gee, I added a few lines of debug scaffolding since then. . . ”

2.2 Developers

This chapter will describe how developers can get started to with FD.io VPP. In this section I can see writing a VPP
pluguin, How to use the python api.

2.2. Developers 71

Vector Packet Processor Documentation, Release 0.1

2.2.1 Building FD.io VPP

Once FD.io VPP has been installed, this getting started guide will be useful to aid you in building FD.io VPP.

Building Commands

The following are instructions on how to build FD.io VPP.

Building VPP Commands

Set up Proxies

Depending on the environment, proxies may need to be set. You may run these commands:

$ export http_proxy=http://<proxy-server-name>.com:<port-number>
$ export https_proxy=https://<proxy-server-name>.com:<port-number>

Build VPP Dependencies

Before building, make sure there are no FD.io VPP or DPDK packages installed by entering the following commands:

$ dpkg -l | grep vpp
$ dpkg -l | grep DPDK

There should be no output, or packages showing after each of the above commands.

Run this to install the dependencies for FD.io VPP. If it hangs during downloading at any point, you may need to set
up proxies for this to work.

$ make install-dep
Hit:1 http://us.archive.ubuntu.com/ubuntu xenial InRelease
Get:2 http://us.archive.ubuntu.com/ubuntu xenial-updates InRelease [109 kB]
Get:3 http://security.ubuntu.com/ubuntu xenial-security InRelease [107 kB]
Get:4 http://us.archive.ubuntu.com/ubuntu xenial-backports InRelease [107 kB]
Get:5 http://us.archive.ubuntu.com/ubuntu xenial-updates/main amd64 Packages [803 kB]
Get:6 http://us.archive.ubuntu.com/ubuntu xenial-updates/main i386 Packages [732 kB]
...
...
Update-alternatives: using /usr/lib/jvm/java-8-openjdk-amd64/bin/jmap to provide /usr/
→˓bin/jmap (jmap) in auto mode
Setting up default-jdk-headless (2:1.8-56ubuntu2) ...
Processing triggers for libc-bin (2.23-0ubuntu3) ...
Processing triggers for systemd (229-4ubuntu6) ...
Processing triggers for ureadahead (0.100.0-19) ...
Processing triggers for ca-certificates (20160104ubuntu1) ...
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...

done.
done.

72 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Build VPP (Debug Mode)

This build version contains debug symbols which is useful to modify VPP. The command below will build debug
version of VPP. This build will come with /build-root/vpp_debug-native.

$ make build
make[1]: Entering directory '/home/vagrant/vpp-master/build-root'
@@@@ Arch for platform 'vpp' is native @@@@
@@@@ Finding source for dpdk @@@@
@@@@ Makefile fragment found in /home/vagrant/vpp-master/build-data/packages/dpdk.mk
→˓@@@@
@@@@ Source found in /home/vagrant/vpp-master/dpdk @@@@
@@@@ Arch for platform 'vpp' is native @@@@
@@@@ Finding source for vpp @@@@
@@@@ Makefile fragment found in /home/vagrant/vpp-master/build-data/packages/vpp.mk
→˓@@@@
@@@@ Source found in /home/vagrant/vpp-master/src @@@@
...
...
make[5]: Leaving directory '/home/vagrant/vpp-master/build-root/build-vpp_debug-
→˓native/vpp/vpp-api/java'
make[4]: Leaving directory '/home/vagrant/vpp-master/build-root/build-vpp_debug-
→˓native/vpp/vpp-api/java'
make[3]: Leaving directory '/home/vagrant/vpp-master/build-root/build-vpp_debug-
→˓native/vpp'
make[2]: Leaving directory '/home/vagrant/vpp-master/build-root/build-vpp_debug-
→˓native/vpp'
@@@@ Installing vpp: nothing to do @@@@
make[1]: Leaving directory '/home/vagrant/vpp-master/build-root'

Build VPP (Release Version)

To build the release version of FD.io VPP. This build is optimized and will not create debug symbols. This build will
come with /build-root/build-vpp-native

$ make release

Building Necessary Packages

To build the debian packages, one of the following commands below depending on the system:

Building Debian Packages

$ make pkg-deb

Building RPM Packages

$ make pkg-rpm

The packages will be found in the build-root directory.

2.2. Developers 73

Vector Packet Processor Documentation, Release 0.1

$ ls *.deb

If packages built correctly, this should be the Output

vpp_18.07-rc0~456-gb361076_amd64.deb vpp-dbg_18.07-rc0~456-gb361076_amd64.
→˓deb
vpp-api-java_18.07-rc0~456-gb361076_amd64.deb vpp-dev_18.07-rc0~456-gb361076_amd64.
→˓deb
vpp-api-lua_18.07-rc0~456-gb361076_amd64.deb vpp-lib_18.07-rc0~456-gb361076_amd64.
→˓deb
vpp-api-python_18.07-rc0~456-gb361076_amd64.deb vpp-plugins_18.07-rc0~456-gb361076_
→˓amd64.deb

Packages built installed end up in build-root directory. Finally, the command below installs all built packages.

$ sudo bash
dpkg -i *.deb

Useful Directories

Useful Directories

After pulling and building FD.io VPP there are a few directories worth looking at. src/vpp/conf

This directory contains default configuration files.

ls
80-vpp.conf startup.conf

User Tools

This directory is provided with DPDK. The two import scripts are cpu_layout.py and dpdk-devbind.py

build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/

ls ./build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/
cpu_layout.py dpdk-devbind.py dpdk-pmdinfo.py dpdk-setup.sh

VPP/bin

build-root/install-vpp_debug-native/vpp/bin/

• This directory contains the vpp executables.

• The most useful files are vpp and vppctl.

• These files are copied to/usr/bin after FDIO is installed.

• You can use the binary file “vpp” located in this directory with gdb to help debug FDIO.

74 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

root@tf-ucs-3# ls ./build-root/install-vpp_debug-native/vpp/bin
elftool svmdbtool svmtool vpp vppapigen vpp_api_test vppctl vpp_get_metrics
→˓vpp_json_test vpp_restart

Devbind

dpdk-devbind.py

• The dpdk-devbind.py script is provided with the Intel DPDK.

• It is included with FD.io VPP.

• After FD.io VPP is built, this script and other DPDK tools can be found in build-root/build-vpp_debug-
native/dpdk/dpdk-17.02/usertools/.

vNet

src/scripts/vnet/

This directory has some very useful examples using the FDIO traffic generator and general configuration.

ls src/scripts/vnet/
arp4 dhcp ip6 l2efpfilter_perf l2flood mcast pcap
→˓rightpeer snat_det

src/vnet/

This directory contains most of the important source code.

ls src/vnet
adj config.h fib interface.api interface_output.c lawful-
→˓intercept misc.c ppp

src/vnet/devices/

This directory contains the device drivers. For example, the vhost driver is in src/vnet/devices/virtio.

ls src/vnet/devices/virtio/
dir.dox vhost_user.api vhost_user_api.c vhost-user.c vhost-user.h

2.2.2 Overview

Describe the software archetecture here.

2.2. Developers 75

Vector Packet Processor Documentation, Release 0.1

Software Architecture

Add Overview Section.

The fd.io vpp implementation is a third-generation vector packet processing implementation specifically related to
US Patent 7,961,636, as well as earlier work. Note that the Apache-2 license specifically grants non-exclusive patent
licenses; we mention this patent as a point of historical interest.

For performance, the vpp dataplane consists of a directed graph of forwarding nodes which process multiple packets
per invocation. This schema enables a variety of micro-processor optimizations: pipelining and prefetching to cover
dependent read latency, inherent I-cache phase behavior, vector instructions. Aside from hardware input and hardware
output nodes, the entire forwarding graph is portable code.

Depending on the scenario at hand, we often spin up multiple worker threads which process ingress-hashes packets
from multiple queues using identical forwarding graph replicas.

Implemetation taxonomy

The vpp dataplane consists of four distinct layers:

• An infrastructure layer comprising vppinfra, vlib, svm, and binary api libraries. See . . . /src/{vppinfra, vlib, svm,
vlibapi, vlibmemory}

• A generic network stack layer: vnet. See . . . /src/vnet

• An application shell: vpp. See . . . /src/vpp

• An increasingly rich set of data-plane plugins: see . . . /src/plugins

It’s important to understand each of these layers in a certain amount of detail. Much of the implementation is best
dealt with at the API level and otherwise left alone.

Vppinfra

Vppinfra is a collection of basic c-library services, quite sufficient to build standalone programs to run directly on bare
metal. It also provides high-performance dynamic arrays, hashes, bitmaps, high-precision real-time clock support,
fine-grained event-logging, and data structure serialization.

One fair comment / fair warning about vppinfra: you can’t always tell a macro from an inline function from an ordinary
function simply by name. Macros are used to avoid function calls in the typical case, and to cause (intentional) side-
effects.

Vppinfra has been around for almost 20 years and tends not to change frequently.

Vectors

Vppinfra vectors are ubiquitous dynamically resized arrays with by user defined “headers”. Many vpppinfra data
structures (e.g. hash, heap, pool) are vectors with various different headers.

The memory layout looks like this:

User header (optional, uword aligned)
Alignment padding (if needed)
Vector length in elements

User's pointer -> Vector element 0
Vector element 1

(continues on next page)

76 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

...
Vector element N-1

As shown above, the vector APIs deal with pointers to the 0th element of a vector. Null pointers are valid vectors of
length zero.

To avoid thrashing the memory allocator, one often resets the length of a vector to zero while retaining the memory
allocation. Set the vector length field to zero via the vec_reset_length(v) macro. [Use the macro! It’s smart about
NULL pointers.]

Typically, the user header is not present. User headers allow for other data structures to be built atop vppinfra vectors.
Users may specify the alignment for data elements via the vec*_aligned macros.

Vectors elements can be any C type e.g. (int, double, struct bar). This is also true for data types built atop vectors
(e.g. heap, pool, etc.). Many macros have _a variants supporting alignment of vector data and _h variants supporting
non-zero-length vector headers. The _ha variants support both.

Inconsistent usage of header and/or alignment related macro variants will cause delayed, confusing failures.

Standard programming error: memorize a pointer to the ith element of a vector, and then expand the vector. Vectors
expand by 3/2, so such code may appear to work for a period of time. Correct code almost always memorizes vector
indices which are invariant across reallocations.

In typical application images, one supplies a set of global functions designed to be called from gdb. Here are a few
examples:

• vl(v) - prints vec_len(v)

• pe(p) - prints pool_elts(p)

• pifi(p, index) - prints pool_is_free_index(p, index)

• debug_hex_bytes (p, nbytes) - hex memory dump nbytes starting at p

Use the “show gdb” debug CLI command to print the current set.

Bitmaps

Vppinfra bitmaps are dynamic, built using the vppinfra vector APIs. Quite handy for a variety jobs.

Pools

Vppinfra pools combine vectors and bitmaps to rapidly allocate and free fixed-size data structures with independent
lifetimes. Pools are perfect for allocating per-session structures.

Hashes

Vppinfra provides several hash flavors. Data plane problems involving packet classification / session lookup often
use . . . /src/vppinfra/bihash_template.[ch] bounded-index extensible hashes. These templates are instantiated multiple
times, to efficiently service different fixed-key sizes.

Bihashes are thread-safe. Read-locking is not required. A simple spin-lock ensures that only one thread writes an
entry at a time.

The original vppinfra hash implementation in . . . /src/vppinfra/hash.[ch] are simple to use, and are often used in
control-plane code which needs exact-string-matching.

2.2. Developers 77

Vector Packet Processor Documentation, Release 0.1

In either case, one almost always looks up a key in a hash table to obtain an index in a related vector or pool. The APIs
are simple enough, but one must take care when using the unmanaged arbitrary-sized key variant. Hash_set_mem
(hash_table, key_pointer, value) memorizes key_pointer. It is usually a bad mistake to pass the address of a vector
element as the second argument to hash_set_mem. It is perfectly fine to memorize constant string addresses in the text
segment.

Format

Vppinfra format is roughly equivalent to printf.

Format has a few properties worth mentioning. Format’s first argument is a (u8 *) vector to which it appends the result
of the current format operation. Chaining calls is very easy:

u8 * result;

result = format (0, "junk = %d, ", junk);
result = format (result, "more junk = %d\n", more_junk);

As previously noted, NULL pointers are perfectly proper 0-length vectors. Format returns a (u8 *) vector, not a C-
string. If you wish to print a (u8 *) vector, use the “%v” format string. If you need a (u8 *) vector which is also a
proper C-string, either of these schemes may be used:

vec_add1 (result, 0)
or
result = format (result, "<whatever>%c", 0);

Remember to vec_free() the result if appropriate. Be careful not to pass format an uninitialized (u8 *).

Format implements a particularly handy user-format scheme via the “%U” format specification. For example:

u8 * format_junk (u8 * s, va_list *va)
{

junk = va_arg (va, u32);
s = format (s, "%s", junk);
return s;

}

result = format (0, "junk = %U, format_junk, "This is some junk");

format_junk() can invoke other user-format functions if desired. The programmer shoulders responsibility for argu-
ment type-checking. It is typical for user format functions to blow up if the va_arg(va, type) macros don’t match the
caller’s idea of reality.

Unformat

Vppinfra unformat is vaguely related to scanf, but considerably more general.

A typical use case involves initializing an unformat_input_t from either a C-string or a (u8 *) vector, then parsing via
unformat() as follows:

unformat_input_t input;

unformat_init_string (&input, "<some-C-string>");
/* or */
unformat_init_vector (&input, <u8-vector>);

78 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Then loop parsing individual elements:

while (unformat_check_input (&input) != UNFORMAT_END_OF_INPUT)
{

if (unformat (&input, "value1 %d", &value1))
;/* unformat sets value1 */

else if (unformat (&input, "value2 %d", &value2)
;/* unformat sets value2 */

else
return clib_error_return (0, "unknown input '%U'",

format_unformat_error, input);
}

As with format, unformat implements a user-unformat function capability via a “%U” user unformat function scheme.

Vppinfra errors and warnings

Many functions within the vpp dataplane have return-values of type clib_error_t *. Clib_error_t’s are arbitrary strings
with a bit of metadata [fatal, warning] and are easy to announce. Returning a NULL clib_error_t * indicates “A-OK,
no error.”

Clib_warning(format-args) is a handy way to add debugging output; clib warnings prepend function:line info to un-
ambiguously locate the message source. Clib_unix_warning() adds perror()-style Linux system-call information. In
production images, clib_warnings result in syslog entries.

Serialization

Vppinfra serialization support allows the programmer to easily serialize and unserialize complex data structures.

The underlying primitive serialize/unserialize functions use network byte-order, so there are no structural issues seri-
alizing on a little-endian host and unserializing on a big-endian host.

Event-logger, graphical event log viewer

The vppinfra event logger provides very lightweight (sub-100ns) precisely time-stamped event-logging services. See
. . . /src/vppinfra/{elog.c, elog.h}

Serialization support makes it easy to save and ultimately to combine a set of event logs. In a distributed system
running NTP over a local LAN, we find that event logs collected from multiple system elements can be combined with
a temporal uncertainty no worse than 50us.

A typical event definition and logging call looks like this:

ELOG_TYPE_DECLARE (e) =
{

.format = "tx-msg: stream %d local seq %d attempt %d",

.format_args = "i4i4i4",
};
struct { u32 stream_id, local_sequence, retry_count; } * ed;
ed = ELOG_DATA (m->elog_main, e);
ed->stream_id = stream_id;
ed->local_sequence = local_sequence;
ed->retry_count = retry_count;

2.2. Developers 79

Vector Packet Processor Documentation, Release 0.1

The ELOG_DATA macro returns a pointer to 20 bytes worth of arbitrary event data, to be formatted (offline, not at
runtime) as described by format_args. Aside from obvious integer formats, the CLIB event logger provides a couple
of interesting additions. The “t4” format pretty-prints enumerated values:

ELOG_TYPE_DECLARE (e) =
{

.format = "get_or_create: %s",

.format_args = "t4",

.n_enum_strings = 2,

.enum_strings = { "old", "new", },
};

The “t” format specifier indicates that the corresponding datum is an index in the event’s set of enumerated strings, as
shown in the previous event type definition.

The “T” format specifier indicates that the corresponding datum is an index in the event log’s string heap. This allows
the programmer to emit arbitrary formatted strings. One often combines this facility with a hash table to keep the
event-log string heap from growing arbitrarily large.

Noting the 20-octet limit per-log-entry data field, the event log formatter supports arbitrary combinations of these data
types. As in: the “.format” field may contain one or more instances of the following:

• i1 - 8-bit unsigned integer

• i2 - 16-bit unsigned integer

• i4 - 32-bit unsigned integer

• i8 - 64-bit unsigned integer

• f4 - float

• f8 - double

• s - NULL-terminated string - be careful

• sN - N-byte character array

• t1,2,4 - per-event enumeration ID

• T4 - Event-log string table offset

The vpp engine event log is thread-safe, and is shared by all threads. Take care not to serialize the computation.
Although the event-logger is about as fast as practicable, it’s not appropriate for per-packet use in hard-core data plane
code. It’s most appropriate for capturing rare events - link up-down events, specific control-plane events and so forth.

The vpp engine has several debug CLI commands for manipulating its event log:

vpp# event-logger clear
vpp# event-logger save <filename> # for security, writes into /tmp/<filename>.

<filename> must not contain '.' or '/'
→˓characters

vpp# show event-logger [all] [<nnn>] # display the event log
by default, the last 250 entries

The event log defaults to 128K entries. The command-line argument “. . . vlib { elog-events nnn } . . . ” configures the
size of the event log.

As described above, the vpp engine event log is thread-safe and shared. To avoid confusing non-appearance of events
logged by worker threads, make sure to code vlib_global_main.elog_main - instead of vm->elog_main. The latter
form is correct in the main thread, but will almost certainly produce bad results in worker threads.

80 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

G2 graphical event viewer

The g2 graphical event viewer can display serialized vppinfra event logs directly, or via the c2cpel tool.

Todo: please convert wiki page and figures

VLIB

Vlib provides vector processing support including graph-node scheduling, reliable multicast support, ultra-lightweight
cooperative multi-tasking threads, a CLI, plug in .DLL support, physical memory and Linux epoll support. Parts of
this library embody US Patent 7,961,636.

Init function discovery

vlib applications register for various [initialization] events by placing structures and __attribute__((constructor)) func-
tions into the image. At appropriate times, the vlib framework walks constructor-generated singly-linked structure
lists, calling the indicated functions. vlib applications create graph nodes, add CLI functions, start cooperative multi-
tasking threads, etc. etc. using this mechanism.

vlib applications invariably include a number of VLIB_INIT_FUNCTION (my_init_function) macros.

Each init / configure / etc. function has the return type clib_error_t *. Make sure that the function returns 0 if all is
well, otherwise the framework will announce an error and exit.

vlib applications must link against vppinfra, and often link against other libraries such as VNET. In the latter case, it
may be necessary to explicitly reference symbol(s) otherwise large portions of the library may be AWOL at runtime.

Node Graph Initialization

vlib packet-processing applications invariably define a set of graph nodes to process packets.

One constructs a vlib_node_registration_t, most often via the VLIB_REGISTER_NODE macro. At runtime, the
framework processes the set of such registrations into a directed graph. It is easy enough to add nodes to the graph at
runtime. The framework does not support removing nodes.

vlib provides several types of vector-processing graph nodes, primarily to control framework dispatch behaviors. The
type member of the vlib_node_registration_t functions as follows:

• VLIB_NODE_TYPE_PRE_INPUT - run before all other node types

• VLIB_NODE_TYPE_INPUT - run as often as possible, after pre_input nodes

• VLIB_NODE_TYPE_INTERNAL - only when explicitly made runnable by adding pending frames for process-
ing

• VLIB_NODE_TYPE_PROCESS - only when explicitly made runnable. “Process” nodes are actually coopera-
tive multi-tasking threads. They must explicitly suspend after a reasonably short period of time.

For a precise understanding of the graph node dispatcher, please read . . . /src/vlib/main.c:vlib_main_loop.

Graph node dispatcher

Vlib_main_loop() dispatches graph nodes. The basic vector processing algorithm is diabolically simple, but may not
be obvious from even a long stare at the code. Here’s how it works: some input node, or set of input nodes, produce a

2.2. Developers 81

Vector Packet Processor Documentation, Release 0.1

vector of work to process. The graph node dispatcher pushes the work vector through the directed graph, subdividing
it as needed, until the original work vector has been completely processed. At that point, the process recurs.

This scheme yields a stable equilibrium in frame size, by construction. Here’s why: as the frame size increases, the
per-frame-element processing time decreases. There are several related forces at work; the simplest to describe is the
effect of vector processing on the CPU L1 I-cache. The first frame element [packet] processed by a given node warms
up the node dispatch function in the L1 I-cache. All subsequent frame elements profit. As we increase the number of
frame elements, the cost per element goes down.

Under light load, it is a crazy waste of CPU cycles to run the graph node dispatcher flat-out. So, the graph node
dispatcher arranges to wait for work by sitting in a timed epoll wait if the prevailing frame size is low. The scheme
has a certain amount of hysteresis to avoid constantly toggling back and forth between interrupt and polling mode.
Although the graph dispatcher supports interrupt and polling modes, our current default device drivers do not.

The graph node scheduler uses a hierarchical timer wheel to reschedule process nodes upon timer expiration.

Graph dispatcher internals

This section may be safely skipped. It’s not necessary to understand graph dispatcher internals to create graph nodes.

Vector Data Structure

In vpp / vlib, we represent vectors as instances of the vlib_frame_t type:

typedef struct vlib_frame_t
{

/* Frame flags. */
u16 flags;

/* Number of scalar bytes in arguments. */
u8 scalar_size;

/* Number of bytes per vector argument. */
u8 vector_size;

/* Number of vector elements currently in frame. */
u16 n_vectors;

/* Scalar and vector arguments to next node. */
u8 arguments[0];

} vlib_frame_t;

Note that one could construct all kinds of vectors - including vectors with some associated scalar data - using this
structure. In the vpp application, vectors typically use a 4-byte vector element size, and zero bytes’ worth of associated
per-frame scalar data.

Frames are always allocated on CLIB_CACHE_LINE_BYTES boundaries. Frames have u32 indices which make use
of the alignment property, so the maximum feasible main heap offset of a frame is CLIB_CACHE_LINE_BYTES *
0xFFFFFFFF: 64*4 = 256 Gbytes.

Scheduling Vectors

As you can see, vectors are not directly associated with graph nodes. We represent that association in a couple of
ways. The simplest is the vlib_pending_frame_t:

82 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

/* A frame pending dispatch by main loop. */
typedef struct
{

/* Node and runtime for this frame. */
u32 node_runtime_index;

/* Frame index (in the heap). */
u32 frame_index;

/* Start of next frames for this node. */
u32 next_frame_index;

/* Special value for next_frame_index when there is no next frame. */
#define VLIB_PENDING_FRAME_NO_NEXT_FRAME ((u32) ~0)
} vlib_pending_frame_t;

Here is the code in . . . /src/vlib/main.c:vlib_main_or_worker_loop() which processes frames:

/*
* Input nodes may have added work to the pending vector.

* Process pending vector until there is nothing left.

* All pending vectors will be processed from input -> output.

*/
for (i = 0; i < _vec_len (nm->pending_frames); i++)

cpu_time_now = dispatch_pending_node (vm, i, cpu_time_now);
/* Reset pending vector for next iteration. */

The pending frame node_runtime_index associates the frame with the node which will process it.

Complications

Fasten your seatbelt. Here’s where the story - and the data structures - become quite complicated. . .

At 100,000 feet: vpp uses a directed graph, not a directed acyclic graph. It’s really quite normal for a packet to visit
ip[46]-lookup multiple times. The worst-case: a graph node which enqueues packets to itself.

To deal with this issue, the graph dispatcher must force allocation of a new frame if the current graph node’s dispatch
function happens to enqueue a packet back to itself.

There are no guarantees that a pending frame will be processed immediately, which means that more packets may
be added to the underlying vlib_frame_t after it has been attached to a vlib_pending_frame_t. Care must be taken to
allocate new frames and pending frames if a (pending_frame, frame) pair fills.

Next frames, next frame ownership

The vlib_next_frame_t is the last key graph dispatcher data structure:

typedef struct
{

/* Frame index. */
u32 frame_index;

/* Node runtime for this next. */
u32 node_runtime_index;

(continues on next page)

2.2. Developers 83

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

/* Next frame flags. */
u32 flags;

/* Reflects node frame-used flag for this next. */
#define VLIB_FRAME_NO_FREE_AFTER_DISPATCH \

VLIB_NODE_FLAG_FRAME_NO_FREE_AFTER_DISPATCH

/* This next frame owns enqueue to node
corresponding to node_runtime_index. */

#define VLIB_FRAME_OWNER (1 << 15)

/* Set when frame has been allocated for this next. */
#define VLIB_FRAME_IS_ALLOCATED VLIB_NODE_FLAG_IS_OUTPUT

/* Set when frame has been added to pending vector. */
#define VLIB_FRAME_PENDING VLIB_NODE_FLAG_IS_DROP

/* Set when frame is to be freed after dispatch. */
#define VLIB_FRAME_FREE_AFTER_DISPATCH VLIB_NODE_FLAG_IS_PUNT

/* Set when frame has traced packets. */
#define VLIB_FRAME_TRACE VLIB_NODE_FLAG_TRACE

/* Number of vectors enqueue to this next since last overflow. */
u32 vectors_since_last_overflow;

} vlib_next_frame_t;

Graph node dispatch functions call vlib_get_next_frame (. . .) to set “(u32 *)to_next” to the right place in the
vlib_frame_t corresponding to the ith arc (aka next0) from the current node to the indicated next node.

After some scuffling around - two levels of macros - processing reaches vlib_get_next_frame_internal (. . .). Get-next-
frame-internal digs up the vlib_next_frame_t corresponding to the desired graph arc.

The next frame data structure amounts to a graph-arc-centric frame cache. Once a node finishes adding element to a
frame, it will acquire a vlib_pending_frame_t and end up on the graph dispatcher’s run-queue. But there’s no guarantee
that more vector elements won’t be added to the underlying frame from the same (source_node, next_index) arc or
from a different (source_node, next_index) arc.

Maintaining consistency of the arc-to-frame cache is necessary. The first step in maintaining consistency is to make
sure that only one graph node at a time thinks it “owns” the target vlib_frame_t.

Back to the graph node dispatch function. In the usual case, a certain number of packets will be added to the
vlib_frame_t acquired by calling vlib_get_next_frame (. . .).

Before a dispatch function returns, it’s required to call vlib_put_next_frame (. . .) for all of the graph arcs it actually
used. This action adds a vlib_pending_frame_t to the graph dispatcher’s pending frame vector.

Vlib_put_next_frame makes a note in the pending frame of the frame index, and also of the vlib_next_frame_t index.

dispatch_pending_node actions

The main graph dispatch loop calls dispatch pending node as shown above.

Dispatch_pending_node recovers the pending frame, and the graph node runtime / dispatch function. Further, it re-
covers the next_frame currently associated with the vlib_frame_t, and detaches the vlib_frame_t from the next_frame.

In . . . /src/vlib/main.c:dispatch_pending_node(. . .), note this stanza:

84 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

/* Force allocation of new frame while current frame is being
dispatched. */

restore_frame_index = ~0;
if (nf->frame_index == p->frame_index)
{

nf->frame_index = ~0;
nf->flags &= ~VLIB_FRAME_IS_ALLOCATED;
if (!(n->flags & VLIB_NODE_FLAG_FRAME_NO_FREE_AFTER_DISPATCH))

restore_frame_index = p->frame_index;
}

dispatch_pending_node is worth a hard stare due to the several second-order optimizations it implements. Almost as
an afterthought, it calls dispatch_node which actually calls the graph node dispatch function.

Process / thread model

vlib provides an ultra-lightweight cooperative multi-tasking thread model. The graph node scheduler invokes
these processes in much the same way as traditional vector-processing run-to-completion graph nodes; plus-or-
minus a setjmp/longjmp pair required to switch stacks. Simply set the vlib_node_registration_t type field to
vlib_NODE_TYPE_PROCESS. Yes, process is a misnomer. These are cooperative multi-tasking threads.

As of this writing, the default stack size is 2<<15 = 32kb. Initialize the node registration’s process_log2_n_stack_bytes
member as needed. The graph node dispatcher makes some effort to detect stack overrun, e.g. by mapping a no-access
page below each thread stack.

Process node dispatch functions are expected to be “while(1) { }” loops which suspend when not otherwise occupied,
and which must not run for unreasonably long periods of time.

“Unreasonably long” is an application-dependent concept. Over the years, we have constructed frame-size sensitive
control-plane nodes which will use a much higher fraction of the available CPU bandwidth when the frame size is low.
The classic example: modifying forwarding tables. So long as the table-builder leaves the forwarding tables in a valid
state, one can suspend the table builder to avoid dropping packets as a result of control-plane activity.

Process nodes can suspend for fixed amounts of time, or until another entity signals an event, or both. See the next
section for a description of the vlib process event mechanism.

When running in vlib process context, one must pay strict attention to loop invariant issues. If one walks a data
structure and calls a function which may suspend, one had best know by construction that it cannot change. Often, it’s
best to simply make a snapshot copy of a data structure, walk the copy at leisure, then free the copy.

Process events

The vlib process event mechanism API is extremely lightweight and easy to use. Here is a typical example:

vlib_main_t *vm = &vlib_global_main;
uword event_type, * event_data = 0;

while (1)
{

vlib_process_wait_for_event_or_clock (vm, 5.0 /* seconds */);

event_type = vlib_process_get_events (vm, &event_data);

switch (event_type) {
case EVENT1:

(continues on next page)

2.2. Developers 85

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

handle_event1s (event_data);
break;

case EVENT2:
handle_event2s (event_data);
break;

case ~0: /* 5-second idle/periodic */
handle_idle ();
break;

default: /* bug! */
ASSERT (0);

}

vec_reset_length(event_data);
}

In this example, the VLIB process node waits for an event to occur, or for 5 seconds to elapse. The code demuxes on
the event type, calling the appropriate handler function. Each call to vlib_process_get_events returns a vector of per-
event-type data passed to successive vlib_process_signal_event calls; it is a serious error to process only event_data[0].

Resetting the event_data vector-length to 0 [instead of calling vec_free] means that the event scheme doesn’t burn
cycles continuously allocating and freeing the event data vector. This is a common vppinfra / vlib coding pattern, well
worth using when appropriate.

Signaling an event is easy, for example:

vlib_process_signal_event (vm, process_node_index, EVENT1,
(uword)arbitrary_event1_data); /* and so forth */

One can either know the process node index by construction - dig it out of the appropriate vlib_node_registration_t -
or by finding the vlib_node_t with vlib_get_node_by_name(. . .).

Buffers

vlib buffering solves the usual set of packet-processing problems, albeit at high performance. Key in terms of perfor-
mance: one ordinarily allocates / frees N buffers at a time rather than one at a time. Except when operating directly on
a specific buffer, one deals with buffers by index, not by pointer.

Packet-processing frames are u32[] arrays, not vlib_buffer_t[] arrays.

Packets comprise one or more vlib buffers, chained together as required. Multiple particle sizes are supported; hard-
ware input nodes simply ask for the required size(s). Coalescing support is available. For obvious reasons one is
discouraged from writing one’s own wild and wacky buffer chain traversal code.

vlib buffer headers are allocated immediately prior to the buffer data area. In typical packet processing this saves a
dependent read wait: given a buffer’s address, one can prefetch the buffer header [metadata] at the same time as the
first cache line of buffer data.

Buffer header metadata (vlib_buffer_t) includes the usual rewrite expansion space, a current_data offset, RX and TX
interface indices, packet trace information, and a opaque areas.

The opaque data is intended to control packet processing in arbitrary subgraph-dependent ways. The programmer
shoulders responsibility for data lifetime analysis, type-checking, etc.

Buffers have reference-counts in support of e.g. multicast replication.

86 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

Shared-memory message API

Local control-plane and application processes interact with the vpp dataplane via asynchronous message-passing in
shared memory over unidirectional queues. The same application APIs are available via sockets.

Capturing API traces and replaying them in a simulation environment requires a disciplined approach to the problem.
This seems like a make-work task, but it is not. When something goes wrong in the control-plane after 300,000 or
3,000,000 operations, high-speed replay of the events leading up to the accident is a huge win.

The shared-memory message API message allocator vl_api_msg_alloc uses a particularly cute trick. Since messages
are processed in order, we try to allocate message buffering from a set of fixed-size, preallocated rings. Each ring item
has a “busy” bit. Freeing one of the preallocated message buffers merely requires the message consumer to clear the
busy bit. No locking required.

Plug-ins

vlib implements a straightforward plug-in DLL mechanism. VLIB client applications specify a directory to search for
plug-in .DLLs, and a name filter to apply (if desired). VLIB needs to load plug-ins very early.

Once loaded, the plug-in DLL mechanism uses dlsym to find and verify a vlib_plugin_registration data structure in
the newly-loaded plug-in.

Debug CLI

Adding debug CLI commands to VLIB applications is very simple.

Here is a complete example:

static clib_error_t *
show_ip_tuple_match (vlib_main_t * vm,

unformat_input_t * input,
vlib_cli_command_t * cmd)

{
vlib_cli_output (vm, "%U\n", format_ip_tuple_match_tables, &routing_main);
return 0;

}

/* *INDENT-OFF* */
static VLIB_CLI_COMMAND (show_ip_tuple_command) =
{

.path = "show ip tuple match",

.short_help = "Show ip 5-tuple match-and-broadcast tables",

.function = show_ip_tuple_match,
};
/* *INDENT-ON* */

This example implements the “show ip tuple match” debug cli command. In ordinary usage, the vlib cli is available
via the “vppctl” applicationn, which sends traffic to a named pipe. One can configure debug CLI telnet access on a
configurable port.

The cli implementation has an output redirection facility which makes it simple to deliver cli output via shared-memory
API messaging,

Particularly for debug or “show tech support” type commands, it would be wasteful to write vlib application code to
pack binary data, write more code elsewhere to unpack the data and finally print the answer. If a certain cli command

2.2. Developers 87

Vector Packet Processor Documentation, Release 0.1

has the potential to hurt packet processing performance by running for too long, do the work incrementally in a process
node. The client can wait.

Packet tracer

Vlib includes a frame element [packet] trace facility, with a simple vlib cli interface. The cli is straightforward: “trace
add input-node-name count”.

To trace 100 packets on a typical x86_64 system running the dpdk plugin: “trace add dpdk-input 100”. When using
the packet generator: “trace add pg-input 100”

Each graph node has the opportunity to capture its own trace data. It is almost always a good idea to do so. The trace
capture APIs are simple.

The packet capture APIs snapshoot binary data, to minimize processing at capture time. Each participating graph node
initialization provides a vppinfra format-style user function to pretty-print data when required by the VLIB “show
trace” command.

Set the VLIB node registration “.format_trace” member to the name of the per-graph node format function.

Here’s a simple example:

u8 * my_node_format_trace (u8 * s, va_list * args)
{

vlib_main_t * vm = va_arg (*args, vlib_main_t *);
vlib_node_t * node = va_arg (*args, vlib_node_t *);
my_node_trace_t * t = va_arg (*args, my_trace_t *);

s = format (s, "My trace data was: %d", t-><whatever>);

return s;
}

The trace framework hands the per-node format function the data it captured as the packet whizzed by. The format
function pretty-prints the data as desired.

Vnet

The vnet library provides vectorized layer-2 and 3 networking graph nodes, a packet generator, and a packet tracer.

In terms of building a packet processing application, vnet provides a platform-independent subgraph to which one
connects a couple of device-driver nodes.

Typical RX connections include “ethernet-input” [full software classification, feeds ipv4-input, ipv6-input, arp-input
etc.] and “ipv4-input-no-checksum” [if hardware can classify, perform ipv4 header checksum].

Effective graph dispatch function coding

Over the 15 years, two distinct styles have emerged: a single/dual/quad loop coding model and a fully-pipelined coding
model. We seldom use the fully-pipelined coding model, so we won’t describe it in any detail

Single/dual loops

The single/dual/quad loop model is the only way to conveniently solve problems where the number of items to process
is not known in advance: typical hardware RX-ring processing. This coding style is also very effective when a given

88 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

node will not need to cover a complex set of dependent reads.

Feature Arcs

A significant number of vpp features are configurable on a per-interface or per-system basis. Rather than ask feature
coders to manually construct the required graph arcs, we built a general mechanism to manage these mechanics.

Specifically, feature arcs comprise ordered sets of graph nodes. Each feature node in an arc is independently controlled.
Feature arc nodes are generally unaware of each other. Handing a packet to “the next feature node” is quite inexpensive.

The feature arc implementation solves the problem of creating graph arcs used for steering.

At the beginning of a feature arc, a bit of setup work is needed, but only if at least one feature is enabled on the arc.

On a per-arc basis, individual feature definitions create a set of ordering dependencies. Feature infrastructure performs
a topological sort of the ordering dependencies, to determine the actual feature order. Missing dependencies will lead
to runtime disorder. See https://gerrit.fd.io/r/#/c/12753 for an example.

If no partial order exists, vpp will refuse to run. Circular dependency loops of the form “a then b, b then c, c then a”
are impossible to satisfy.

Adding a feature to an existing feature arc

To nobody’s great surprise, we set up feature arcs using the typical “macro -> constructor function -> list of declara-
tions” pattern:

VNET_FEATURE_INIT (mactime, static) =
{

.arc_name = "device-input",

.node_name = "mactime",

.runs_before = VNET_FEATURES ("ethernet-input"),
};

This creates a “mactime” feature on the “device-input” arc.

Once per frame, dig up the vnet_feature_config_main_t corresponding to the “device-input” feature arc:

vnet_main_t *vnm = vnet_get_main ();
vnet_interface_main_t *im = &vnm->interface_main;
u8 arc = im->output_feature_arc_index;
vnet_feature_config_main_t *fcm;

fcm = vnet_feature_get_config_main (arc);

Note that in this case, we’ve stored the required arc index - assigned by the feature infrastructure - in the
vnet_interface_main_t. Where to put the arc index is a programmer’s decision when creating a feature arc.

Per packet, set next0 to steer packets to the next node they should visit:

vnet_get_config_data (&fcm->config_main,
&b0->current_config_index /* value-result */,
&next0, 0 /* # bytes of config data */);

Configuration data is per-feature arc, and is often unused. Note that it’s normal to reset next0 to divert packets
elsewhere; often, to drop them for cause:

next0 = MACTIME_NEXT_DROP;
b0->error = node->errors[DROP_CAUSE];

2.2. Developers 89

https://gerrit.fd.io/r/#/c/12753

Vector Packet Processor Documentation, Release 0.1

Creating a feature arc

Once again, we create feature arcs using constructor macros:

VNET_FEATURE_ARC_INIT (ip4_unicast, static) =
{

.arc_name = "ip4-unicast",

.start_nodes = VNET_FEATURES ("ip4-input", "ip4-input-no-checksum"),

.arc_index_ptr = &ip4_main.lookup_main.ucast_feature_arc_index,
};

In this case, we configure two arc start nodes to handle the “hardware-verified ip checksum or not” cases. During
initialization, the feature infrastructure stores the arc index as shown.

In the head-of-arc node, do the following to send packets along the feature arc:

ip_lookup_main_t *lm = &im->lookup_main;
arc = lm->ucast_feature_arc_index;

Once per packet, initialize packet metadata to walk the feature arc:

vnet_feature_arc_start (arc, sw_if_index0, &next, b0);

Enabling / Disabling features

Simply call vnet_feature_enable_disable to enable or disable a specific feature:

vnet_feature_enable_disable ("device-input", /* arc name */
"mactime", /* feature name */

sw_if_index, /* Interface sw_if_index */
enable_disable, /* 1 => enable */
0 /* (void *) feature_configuration */,
0 /* feature_configuration_nbytes */);

The feature_configuration opaque is seldom used.

If you wish to make a feature a de facto system-level concept, pass sw_if_index=0 at all times. Sw_if_index 0 is
always valid, and corresponds to the “local” interface.

Related “show” commands

To display the entire set of features, use “show features [verbose]”. The verbose form displays arc indices, and feature
indicies within the arcs

$ vppctl show features verbose
Available feature paths
<snip>
[14] ip4-unicast:

[0]: nat64-out2in-handoff
[1]: nat64-out2in
[2]: nat44-ed-hairpin-dst
[3]: nat44-hairpin-dst
[4]: ip4-dhcp-client-detect
[5]: nat44-out2in-fast

(continues on next page)

90 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

[6]: nat44-in2out-fast
[7]: nat44-handoff-classify
[8]: nat44-out2in-worker-handoff
[9]: nat44-in2out-worker-handoff
[10]: nat44-ed-classify
[11]: nat44-ed-out2in
[12]: nat44-ed-in2out
[13]: nat44-det-classify
[14]: nat44-det-out2in
[15]: nat44-det-in2out
[16]: nat44-classify
[17]: nat44-out2in
[18]: nat44-in2out
[19]: ip4-qos-record
[20]: ip4-vxlan-gpe-bypass
[21]: ip4-reassembly-feature
[22]: ip4-not-enabled
[23]: ip4-source-and-port-range-check-rx
[24]: ip4-flow-classify
[25]: ip4-inacl
[26]: ip4-source-check-via-rx
[27]: ip4-source-check-via-any
[28]: ip4-policer-classify
[29]: ipsec-input-ip4
[30]: vpath-input-ip4
[31]: ip4-vxlan-bypass
[32]: ip4-lookup

<snip>

Here, we learn that the ip4-unicast feature arc has index 14, and that e.g. ip4-inacl is the 25th feature in the generated
partial order.

To display the features currently active on a specific interface, use “show interface features”:

$ vppctl show interface GigabitEthernet3/0/0 features
Feature paths configured on GigabitEthernet3/0/0...
<snip>
ip4-unicast:

nat44-out2in
<snip>

Table of Feature Arcs

Simply search for name-strings to track down the arc definition, location of the arc index, etc.

Arc Name
device-input
ethernet-output
interface-output
ip4-drop
ip4-local
ip4-multicast
ip4-output
ip4-punt

(continues on next page)

2.2. Developers 91

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

| ip4-unicast |
| ip6-drop |
| ip6-local |
| ip6-multicast |
| ip6-output |
| ip6-punt |
| ip6-unicast |
| mpls-input |
| mpls-output |
| nsh-output |

Bounded-index Extensible Hashing

Vpp uses bounded-index extensible hashing to solve a variety of exact-match (key, value) lookup problems. Benefits
of the current implementation:

• Very high record count scaling, tested to 100,000,000 records.

• Lookup performance degrades gracefully as the number of records increases

• No reader locking required

• Template implementation, it’s easy to support arbitrary (key,value) types

Bounded-index extensible hashing has been widely used in databases for decades.

Bihash uses a two-level data structure:

+-----------------+
| bucket-0 |
| log2_size |
| backing store |
+-----------------+
| bucket-1 |
| log2_size | +--------------------------------+
| backing store | --------> | KVP_PER_PAGE * key-value-pairs |
+-----------------+ | page 0 |

... +--------------------------------+
+-----------------+ | KVP_PER_PAGE * key-value-pairs |
| bucket-2**N-1 | | page 1 |
| log2_size | +--------------------------------+
| backing store | ---
+-----------------+ +--------------------------------+

| KVP_PER_PAGE * key-value-pairs |
| page 2**(log2(size)) - 1 |
+--------------------------------+

Discussion of the algorithm

This structure has a couple of major advantages. In practice, each bucket entry fits into a 64-bit integer. Coincidentally,
vpp’s target CPU architectures support 64-bit atomic operations. When modifying the contents of a specific bucket,
we do the following:

• Make a working copy of the bucket’s backing storage

• Atomically swap a pointer to the working copy into the bucket array

92 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

• Change the original backing store data

• Atomically swap back to the original

So, no reader locking is required to search a bihash table.

At lookup time, the implementation computes a key hash code. We use the least-significant N bits of the hash to select
the bucket.

With the bucket in hand, we learn log2 (nBackingPages) for the selected bucket. At this point, we use the next
log2_size bits from the hash code to select the specific backing page in which the (key,value) page will be found.

Net result: we search one backing page, not 2**log2_size pages. This is a key property of the algorithm.

When sufficient collisions occur to fill the backing pages for a given bucket, we double the bucket size, rehash, and
deal the bucket contents into a double-sized set of backing pages. In the future, we may represent the size as a linear
combination of two powers-of-two, to increase space efficiency.

To solve the “jackpot case” where a set of records collide under hashing in a bad way, the implementation will fall
back to linear search across 2**log2_size backing pages on a per-bucket basis.

To maintain space efficiency, we should configure the bucket array so that backing pages are effectively utilized.
Lookup performance tends to change very litte if the bucket array is too small or too large.

Bihash depends on selecting an effective hash function. If one were to use a truly broken hash function such as “return
1ULL.” bihash would still work, but it would be equivalent to poorly-programmed linear search.

We often use cpu intrinsic functions - think crc32 - to rapidly compute a hash code which has decent statistics.

Bihash Cookbook

Using current (key,value) template instance types

It’s quite easy to use one of the template instance types. As of this writing, . . . /src/vppinfra provides pre-built templates
for 8, 16, 20, 24, 40, and 48 byte keys, u8 * vector keys, and 8 byte values.

See . . . /src/vppinfra/{bihash_<key-size>_8}.h

To define the data types, #include a specific template instance, most often in a subsystem header file:

#include <vppinfra/bihash_8_8.h>

If you’re building a standalone application, you’ll need to define the various functions by #including the method
implementation file in a C source file.

The core vpp engine currently uses most if not all of the known bihash types, so you probably won’t need to #include
the method implementation file.

#include <vppinfra/bihash_template.c>

Add an instance of the selected bihash data structure to e.g. a “main_t” structure:

typedef struct
{

...
BVT (clib_bihash) hash;
or
clib_bihash_8_8_t hash;
...

} my_main_t;

2.2. Developers 93

Vector Packet Processor Documentation, Release 0.1

The BV macro concatenate its argument with the value of the preprocessor symbol BIHASH_TYPE. The BVT macro
concatenates its argument with the value of BIHASH_TYPE and the fixed-string “_t”. So in the above example, BVT
(clib_bihash) generates “clib_bihash_8_8_t”.

If you’re sure you won’t decide to change the template / type name later, it’s perfectly OK to code “clib_bihash_8_8_t”
and so forth.

In fact, if you #include multiple template instances in a single source file, you must use fully-enumerated type names.
The macros stand no chance of working.

Initializing a bihash table

Call the init function as shown. As a rough guide, pick a number of buckets which is approximately num-
ber_of_expected_records/BIHASH_KVP_PER_PAGE from the relevant template instance header-file. See previous
discussion.

The amount of memory selected should easily contain all of the records, with a generous allowance for hash collisions.
Bihash memory is allocated separately from the main heap, and won’t cost anything except kernel PTE’s until touched,
so it’s OK to be reasonably generous.

For example:

my_main_t *mm = &my_main;
clib_bihash_8_8_t *h;

h = &mm->hash_table;

clib_bihash_init_8_8 (h, "test", (u32) number_of_buckets,
(uword) memory_size);

Add or delete a key/value pair

Use BV(clib_bihash_add_del), or the explicit type variant:

clib_bihash_kv_8_8_t kv;
clib_bihash_8_8_t * h;
my_main_t *mm = &my_main;
clib_bihash_8_8_t *h;

h = &mm->hash_table;
kv.key = key_to_add_or_delete;
kv.value = value_to_add_or_delete;

clib_bihash_add_del_8_8 (h, &kv, is_add /* 1=add, 0=delete */);

In the delete case, kv.value is irrelevant. To change the value associated with an existing (key,value) pair, simply re-add
the [new] pair.

Simple search

The simplest possible (key, value) search goes like so:

94 Chapter 2. Getting Started Guides

Vector Packet Processor Documentation, Release 0.1

clib_bihash_kv_8_8_t search_kv, return_kv;
clib_bihash_8_8_t * h;
my_main_t *mm = &my_main;
clib_bihash_8_8_t *h;

h = &mm->hash_table;
search_kv.key = key_to_add_or_delete;

if (clib_bihash_search_8_8 (h, &search_kv, &return_kv) < 0)
key_not_found()

else
key_not_found();

Note that it’s perfectly fine to collect the lookup result

if (clib_bihash_search_8_8 (h, &search_kv, &search_kv))
key_not_found();

etc.

Bihash vector processing

When processing a vector of packets which need a certain lookup performed, it’s worth the trouble to compute the key
hash, and prefetch the correct bucket ahead of time.

Here’s a sketch of one way to write the required code:

Dual-loop:

• 6 packets ahead, prefetch 2x vlib_buffer_t’s and 2x packet data required to form the record keys

• 4 packets ahead, form 2x record keys and call BV(clib_bihash_hash) or the explicit hash function to calculate
the record hashes. Call 2x BV(clib_bihash_prefetch_bucket) to prefetch the buckets

• 2 packets ahead, call 2x BV(clib_bihash_prefetch_data) to prefetch 2x (key,value) data pages.

• In the processing section, call 2x BV(clib_bihash_search_inline_with_hash) to perform the search

Programmer’s choice whether to stash the hash code somewhere in vnet_buffer(b) metadata, or to use local variables.

Single-loop:

• Use simple search as shown above.

Walking a bihash table

A fairly common scenario to build “show” commands involves walking a bihash table. It’s simple enough:

my_main_t *mm = &my_main;
clib_bihash_8_8_t *h;
void callback_fn (clib_bihash_kv_8_8_t *, void *);

h = &mm->hash_table;

BV(clib_bihash_foreach_key_value_pair) (h, callback_fn, (void *) arg);

To nobody’s great surprise: clib_bihash_foreach_key_value_pair iterates across the entire table, calling callback_fn
with active entries.

2.2. Developers 95

Vector Packet Processor Documentation, Release 0.1

Creating a new template instance

Creating a new template is easy. Use one of the existing templates as a model, and make the obvious changes. The
hash and key_compare methods are performance-critical in multiple senses.

If the key compare method is slow, every lookup will be slow. If the hash function is slow, same story. If the hash
function has poor statistical properties, space efficiency will suffer. In the limit, a bad enough hash function will cause
large portions of the table to revert to linear search.

Use of the best available vector unit is well worth the trouble in the hash and key_compare functions.

96 Chapter 2. Getting Started Guides

CHAPTER 3

Use Cases

This chapter contains a sample of the many ways FD.io VPP can be used. It is by no means an extensive list, but
should give a sampling of the many features contained in FD.io VPP.

3.1 FD.io VPP with Containers

This section will cover connecting two Linux containers with VPP. A container is essentially a more efficient and
faster VM, due to the fact that a container does not simulate a separate kernel and hardware. You can read more about
Linux containers here.

3.1.1 Creating Containers

First you should have root privileges:

~$ sudo bash

Then install packages for containers such as lxc:

~# apt-get install bridge-utils lxc

As quoted from the lxc.conf manpage, “container configuration is held in the config stored in the container’s directory.
A basic configuration is generated at container creation time with the default’s recommended for the chosen template
as well as extra default keys coming from the default.conf file.”

“That default.conf file is either located at /etc/lxc/default.conf or for unprivileged containers at ~/.con-
fig/lxc/default.conf.”

Since we want to ping between two containers, we’ll need to add to this file.

Look at the contents of default.conf, which should initially look like this:

97

https://linuxcontainers.org/
https://linuxcontainers.org/it/lxc/manpages/man5/lxc.conf.5.html

Vector Packet Processor Documentation, Release 0.1

~# cat /etc/lxc/default.conf
lxc.network.type = veth
lxc.network.link = lxcbr0
lxc.network.flags = up
lxc.network.hwaddr = 00:16:3e:xx:xx:xx

As you can see, by default there is one veth interface.

Now you will append to this file so that each container you create will have an interface for a Linux bridge and an
unconsumed second interface.

You can do this by piping echo output into tee, where each line is separated with a newline character \n as shown
below. Alternatively, you can manually add to this file with a text editor such as vi, but make sure you have root
privileges.

~# echo -e "lxc.network.name = veth0\nlxc.network.type = veth\nlxc.network.name =
→˓veth_link1" | sudo tee -a /etc/lxc/default.conf

Inspect the contents again to verify the file was indeed modified:

~# cat /etc/lxc/default.conf
lxc.network.type = veth
lxc.network.link = lxcbr0
lxc.network.flags = up
lxc.network.hwaddr = 00:16:3e:xx:xx:xx
lxc.network.name = veth0
lxc.network.type = veth
lxc.network.name = veth_link1

After this, we’re ready to create the containers.

Creates an Ubuntu Xenial container named “cone”.

~# lxc-create -t download -n cone -- --dist ubuntu --release xenial --arch amd64 --
→˓keyserver hkp://p80.pool.sks-keyservers.net:80

If successful, you’ll get an output similar to this:

You just created an Ubuntu xenial amd64 (20180625_07:42) container.

To enable SSH, run: apt install openssh-server
No default root or user password are set by LXC.

Make another container “ctwo”.

~# lxc-create -t download -n ctwo -- --dist ubuntu --release xenial --arch amd64 --
→˓keyserver hkp://p80.pool.sks-keyservers.net:80

List your containers to verify they exist:

~# lxc-ls
cone ctwo

Start the first container:

~# lxc-start --name cone

And verify its running:

98 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

~# lxc-ls --fancy
NAME STATE AUTOSTART GROUPS IPV4 IPV6
cone RUNNING 0 - - -
ctwo STOPPED 0 - - -

Note: Here are some lxc container commands you may find useful:

sudo lxc-ls --fancy
sudo lxc-start --name u1 --daemon
sudo lxc-info --name u1
sudo lxc-stop --name u1
sudo lxc-destroy --name u1

3.1.2 Container packages

Now we can go into container cone and install prerequisites such as VPP, and perform some additional commands:

To enter our container via the shell, type:

~# lxc-attach -n cone
root@cone:/#

Run the linux DHCP setup and install VPP:

root@cone:/# resolvconf -d eth0
root@cone:/# dhclient
root@cone:/# apt-get install -y wget
root@cone:/# echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.
→˓ubuntu.xenial.main/ ./" | sudo tee -a /etc/apt/sources.list.d/99fd.io.list
root@cone:/# apt-get update
root@cone:/# apt-get install -y --force-yes vpp
root@cone:/# sh -c 'echo \"\\ndpdk {\\n no-pci\\n}\" >> /etc/vpp/startup.conf'

After this is done, start VPP in this container:

root@cone:/# service vpp start

Exit this container with the exit command (you may need to run exit twice):

root@cone:/# exit
exit
root@cone:/# exit
exit
root@localhost:~#

Repeat the container setup on this page for the second container ctwo. Go to the end of the previous page if you forgot
how to start a container.

3.1.3 Connecting the two Containers

Now for connecting these two linux containers to VPP and pinging between them.

Enter container cone, and check the current network configuration:

3.1. FD.io VPP with Containers 99

https://help.ubuntu.com/lts/serverguide/lxc.html.en-GB#lxc-basic-usage

Vector Packet Processor Documentation, Release 0.1

root@cone:/# ip -o a
1: lo inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_lft forever
1: lo inet6 ::1/128 scope host \ valid_lft forever preferred_lft forever
30: veth0 inet 10.0.3.157/24 brd 10.0.3.255 scope global veth0\ valid_lft
→˓forever preferred_lft forever
30: veth0 inet6 fe80::216:3eff:fee2:d0ba/64 scope link \ valid_lft forever
→˓preferred_lft forever
32: veth_link1 inet6 fe80::2c9d:83ff:fe33:37e/64 scope link \ valid_lft
→˓forever preferred_lft forever

You can see that there are three network interfaces, lo, veth0, and veth_link1.

Notice that veth_link1 has no assigned IP.

Check if the interfaces are down or up:

root@cone:/# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
→˓group default qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
30: veth0@if31: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
→˓mode DEFAULT group default qlen 1000

link/ether 00:16:3e:e2:d0:ba brd ff:ff:ff:ff:ff:ff link-netnsid 0
32: veth_link1@if33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
→˓UP mode DEFAULT group default qlen 1000

link/ether 2e:9d:83:33:03:7e brd ff:ff:ff:ff:ff:ff link-netnsid 0

Note: Take note of the network index for veth_link1. In our case, it 32, and its parent index (the host machine, not
the containers) is 33, shown by veth_link1@if33. Yours will most likely be different, but please take note of these
index’s.

Make sure your loopback interface is up, and assign an IP and gateway to veth_link1.

root@cone:/# ip link set dev lo up
root@cone:/# ip addr add 172.16.1.2/24 dev veth_link1
root@cone:/# ip link set dev veth_link1 up
root@cone:/# dhclient -r
root@cone:/# ip route add default via 172.16.1.1 dev veth_link1

Here, the IP is 172.16.1.2/24 and the gateway is 172.16.1.1.

Run some commands to verify the changes:

root@cone:/# ip -o a
1: lo inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_lft forever
1: lo inet6 ::1/128 scope host \ valid_lft forever preferred_lft forever
30: veth0 inet6 fe80::216:3eff:fee2:d0ba/64 scope link \ valid_lft forever
→˓preferred_lft forever
32: veth_link1 inet 172.16.1.2/24 scope global veth_link1\ valid_lft forever
→˓preferred_lft forever
32: veth_link1 inet6 fe80::2c9d:83ff:fe33:37e/64 scope link \ valid_lft
→˓forever preferred_lft forever

root@cone:/# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

(continues on next page)

100 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

default 172.16.1.1 0.0.0.0 UG 0 0 0 veth_link1
172.16.1.0 * 255.255.255.0 U 0 0 0 veth_link1

We see that the IP has been assigned, as well as our default gateway.

Now exit this container and repeat this process with container ctwo, except with IP 172.16.2.2/24 and gateway
172.16.2.1.

After thats done for both containers, exit from the container if you’re in one:

root@ctwo:/# exit
exit
root@localhost:~#

In the machine running the containers, run ip link to see the host veth network interfaces, and their link with their
respective container veth’s.

root@localhost:~# ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noqueue state DOWN mode DEFAULT group default qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
→˓DEFAULT group default qlen 1000

link/ether 08:00:27:33:82:8a brd ff:ff:ff:ff:ff:ff
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
→˓DEFAULT group default qlen 1000

link/ether 08:00:27:d9:9f:ac brd ff:ff:ff:ff:ff:ff
4: enp0s9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
→˓DEFAULT group default qlen 1000

link/ether 08:00:27:78:84:9d brd ff:ff:ff:ff:ff:ff
5: lxcbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode
→˓DEFAULT group default qlen 1000

link/ether 00:16:3e:00:00:00 brd ff:ff:ff:ff:ff:ff
19: veth0C2FL7@if18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master
→˓lxcbr0 state UP mode DEFAULT group default qlen 1000

link/ether fe:0d:da:90:c1:65 brd ff:ff:ff:ff:ff:ff link-netnsid 1
21: veth8NA72P@if20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
→˓UP mode DEFAULT group default qlen 1000

link/ether fe:1c:9e:01:9f:82 brd ff:ff:ff:ff:ff:ff link-netnsid 1
31: vethXQMY4C@if30: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master
→˓lxcbr0 state UP mode DEFAULT group default qlen 1000

link/ether fe:9a:d9:29:40:bb brd ff:ff:ff:ff:ff:ff link-netnsid 0
33: vethQL7KOC@if32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
→˓UP mode DEFAULT group default qlen 1000

link/ether fe:ed:89:54:47:a2 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Remember our network interface index 32 in cone from this note? We can see at the bottom the name of the 33rd index
vethQL7KOC@if32. Keep note of this network interface name for the veth connected to cone (ex. vethQL7KOC),
and the other network interface name for ctwo.

With VPP in the host machine, show current VPP interfaces:

root@localhost:~# vppctl show inter
Name Idx State MTU (L3/IP4/IP6/MPLS) Counter

→˓Count
local0 0 down 0/0/0/0

Which should only output local0.

3.1. FD.io VPP with Containers 101

Vector Packet Processor Documentation, Release 0.1

Based on the names of the network interfaces discussed previously, which are specific to my systems, we can create
VPP host-interfaces:

root@localhost:~# vppctl create host-interface name vethQL7K0C
root@localhost:~# vppctl create host-interface name veth8NA72P

Verify they have been set up properly:

root@localhost:~# vppctl show inter
Name Idx State MTU (L3/IP4/IP6/MPLS) Counter

→˓Count
host-vethQL7K0C 1 down 9000/0/0/0
host-veth8NA72P 2 down 9000/0/0/0
local0 0 down 0/0/0/0

Which should output three network interfaces, local0, and the other two host network interfaces linked to the container
veth’s.

Set their state to up:

root@localhost:~# vppctl set interface state host-vethQL7K0C up
root@localhost:~# vppctl set interface state host-veth8NA72P up

Verify they are now up:

root@localhost:~# vppctl show inter
Name Idx State MTU (L3/IP4/IP6/MPLS) Counter

→˓Count
host-vethQL7K0C 1 up 9000/0/0/0
host-veth8NA72P 2 up 9000/0/0/0
local0 0 down 0/0/0/0

Add IP addresses for the other end of each veth link:

root@localhost:~# vppctl set interface ip address host-vethQL7K0C 172.16.1.1/24
root@localhost:~# vppctl set interface ip address host-veth8NA72P 172.16.2.1/24

Verify the addresses are set properly by looking at the L3 table:

root@localhost:~# vppctl show inter addr
host-vethQL7K0C (up):

L3 172.16.1.1/24
host-veth8NA72P (up):

L3 172.16.2.1/24
local0 (dn):

Or looking at the FIB by doing:

root@localhost:~# vppctl show ip fib
ipv4-VRF:0, fib_index:0, flow hash:[src dst sport dport proto] locks:[src:plugin-
→˓hi:2, src:default-route:1,]
0.0.0.0/0

unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:1 buckets:1 uRPF:0 to:[0:0]]
[0] [@0]: dpo-drop ip4

0.0.0.0/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:2 buckets:1 uRPF:1 to:[0:0]]

(continues on next page)

102 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

[0] [@0]: dpo-drop ip4
172.16.1.0/32

unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:10 buckets:1 uRPF:9 to:[0:0]]
[0] [@0]: dpo-drop ip4

172.16.1.0/24
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:9 buckets:1 uRPF:8 to:[0:0]]
[0] [@4]: ipv4-glean: host-vethQL7K0C: mtu:9000 ffffffffffff02fec953f98c0806

172.16.1.1/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:12 buckets:1 uRPF:13 to:[0:0]]
[0] [@2]: dpo-receive: 172.16.1.1 on host-vethQL7K0C

172.16.1.255/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:11 buckets:1 uRPF:11 to:[0:0]]
[0] [@0]: dpo-drop ip4

172.16.2.0/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:14 buckets:1 uRPF:15 to:[0:0]]
[0] [@0]: dpo-drop ip4

172.16.2.0/24
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:13 buckets:1 uRPF:14 to:[0:0]]
[0] [@4]: ipv4-glean: host-veth8NA72P: mtu:9000 ffffffffffff02fe305400e80806

172.16.2.1/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:16 buckets:1 uRPF:19 to:[0:0]]
[0] [@2]: dpo-receive: 172.16.2.1 on host-veth8NA72P

172.16.2.255/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:15 buckets:1 uRPF:17 to:[0:0]]
[0] [@0]: dpo-drop ip4

224.0.0.0/4
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:4 buckets:1 uRPF:3 to:[0:0]]
[0] [@0]: dpo-drop ip4

240.0.0.0/4
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:3 buckets:1 uRPF:2 to:[0:0]]
[0] [@0]: dpo-drop ip4

255.255.255.255/32
unicast-ip4-chain
[@0]: dpo-load-balance: [proto:ip4 index:5 buckets:1 uRPF:4 to:[0:0]]
[0] [@0]: dpo-drop ip4

At long last you probably want to see some pings:

root@localhost:~# lxc-attach -n cone -- ping -c3 172.16.2.2
PING 172.16.2.2 (172.16.2.2) 56(84) bytes of data.
64 bytes from 172.16.2.2: icmp_seq=1 ttl=63 time=0.102 ms
64 bytes from 172.16.2.2: icmp_seq=2 ttl=63 time=0.189 ms
64 bytes from 172.16.2.2: icmp_seq=3 ttl=63 time=0.150 ms

--- 172.16.2.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.102/0.147/0.189/0.035 ms

(continues on next page)

3.1. FD.io VPP with Containers 103

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

root@localhost:~# lxc-attach -n ctwo -- ping -c3 172.16.1.2
PING 172.16.1.2 (172.16.1.2) 56(84) bytes of data.
64 bytes from 172.16.1.2: icmp_seq=1 ttl=63 time=0.111 ms
64 bytes from 172.16.1.2: icmp_seq=2 ttl=63 time=0.089 ms
64 bytes from 172.16.1.2: icmp_seq=3 ttl=63 time=0.096 ms

--- 172.16.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.089/0.098/0.111/0.014 ms

Which should send/recieve three packets for each command.

This is the end of this guide. Great work!

3.2 FD.io VPP with Virtual Machines

This chapter will describe how to use FD.io VPP with virtual machines. We describe how to create Vhost port with
VPP and how to connect them to VPP. We will also discuss some limitations of Vhost.

3.2.1 Prerequisites

For this use case we will assume FD.io VPP is installed. We will also assume the user can create and start basic virtual
machines. This use case will use the linux virsh commands. For more information on virsh refer to virsh man page.

The image that we use is based on an Ubuntu cloud image downloaded from: Ubuntu Cloud Images.

All FD.io VPP commands are being run from a su shell.

3.2.2 Topology

In this case we will use 2 systems. One system we will be running standard linux, the other will be running FD.io
VPP.

Fig. 1: Vhost Use Case Topology

104 Chapter 3. Use Cases

https://linux.die.net/man/1/virsh
https://cloud-images.ubuntu.com/xenial/current

Vector Packet Processor Documentation, Release 0.1

3.2.3 Creating The Virtual Interface

We will start on the system running FD.io VPP and show that no Virtual interfaces have been created. We do this using
the Show Interface command.

Notice we do not have any virtual interfaces. We do have an interface (TenGigabitEthernet86/0/0) that is up. This
interface is connected to a system running, in our example standard linux. We will use this system to verify our
connectivity to our VM with ping.

$ sudo bash
vppctl

_______ _ _ _____ ___
__/ __/ _ \ (_)__ | | / / _ \/ _ \
_/ _// // / / / _ \ | |/ / ___/ ___/
/_/ /____(_)_/___/ |___/_/ /_/

vpp# clear interfaces
vpp# show int

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up
TenGigabitEthernet86/0/1 2 down
local0 0 down
vpp#

For more information on the interface commands refer to: Interface Commands

The next step will be to create the virtual port using the Create Vhost-User command. This command will create the
virtual port in VPP and create a linux socket that the VM will use to connect to VPP.

The port can be created using VPP as the socket server or client.

Creating the VPP port:

vpp# create vhost socket /tmp/vm00.sock
VirtualEthernet0/0/0
vpp# show int

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 down
local0 0 down
vpp#

Notice the interface VirtualEthernet0/0/0. In this example we created the virtual interface as a client.

We can get more detail on the vhost connection with the Show Vhost-User command.

vpp# show vhost
Virtio vhost-user interfaces
Global:

coalesce frames 32 time 1e-3
number of rx virtqueues in interrupt mode: 0

Interface: VirtualEthernet0/0/0 (ifindex 3)
virtio_net_hdr_sz 12
features mask (0xffffffffffffffff):
features (0x58208000):
VIRTIO_NET_F_MRG_RXBUF (15)
VIRTIO_NET_F_GUEST_ANNOUNCE (21)
VIRTIO_F_ANY_LAYOUT (27)

(continues on next page)

3.2. FD.io VPP with Virtual Machines 105

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

VIRTIO_F_INDIRECT_DESC (28)
VHOST_USER_F_PROTOCOL_FEATURES (30)
protocol features (0x3)
VHOST_USER_PROTOCOL_F_MQ (0)
VHOST_USER_PROTOCOL_F_LOG_SHMFD (1)

socket filename /tmp/vm00.sock type client errno "No such file or directory"

rx placement:
tx placement: spin-lock
thread 0 on vring 0
thread 1 on vring 0

Memory regions (total 0)

Notice No such file or directory and Memory regions (total 0). This is because the VM has not been created yet.

3.2.4 Creating the Virtual Machine

We will now create the virtual machine. We use the “virsh create command”. For the complete file we use refer to An
XML File.

It is important to note that in the XML file we specify the socket path that is used to connect to FD.io VPP.

This is done with a section that looks like this

<interface type='vhostuser'>
<mac address='52:54:00:4c:47:f2'/>
<source type='unix' path='/tmp//vm00.sock' mode='server'/>
<model type='virtio'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

</interface>

Notice the interface type and the path to the socket.

Now we create the VM. The virsh list command shows the VMs that have been created. We start with no VMs.

$ virsh list
Id Name State
--

Create the VM with the virsh create command specifying our xml file.

$ virsh create ./iperf3-vm.xml
Domain iperf-server3 created from ./iperf3-vm.xml

$ virsh list
Id Name State
--
65 iperf-server3 running

The VM is now created.

Note: After a VM is created an xml file can created with “virsh dumpxml”.

106 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

$ virsh dumpxml iperf-server3
<domain type='kvm' id='65'>

<name>iperf-server3</name>
<uuid>e23d37c1-10c3-4a6e-ae99-f315a4165641</uuid>
<memory unit='KiB'>262144</memory>

.....

Once the virtual machine is created notice the socket filename shows Success and there are Memory Regions. At this
point the VM and FD.io VPP are connected. Also notice qsz 256. This system is running an older version of qemu. A
queue size of 256 will affect vhost throughput. The qsz should be 1024. On the web you should be able to find ways
to install a newer version of qemu or change the queue size.

vpp# show vhost
Virtio vhost-user interfaces
Global:

coalesce frames 32 time 1e-3
number of rx virtqueues in interrupt mode: 0

Interface: VirtualEthernet0/0/0 (ifindex 3)
virtio_net_hdr_sz 12
features mask (0xffffffffffffffff):
features (0x58208000):
VIRTIO_NET_F_MRG_RXBUF (15)
VIRTIO_NET_F_GUEST_ANNOUNCE (21)
VIRTIO_F_ANY_LAYOUT (27)
VIRTIO_F_INDIRECT_DESC (28)
VHOST_USER_F_PROTOCOL_FEATURES (30)
protocol features (0x3)
VHOST_USER_PROTOCOL_F_MQ (0)
VHOST_USER_PROTOCOL_F_LOG_SHMFD (1)

socket filename /tmp/vm00.sock type client errno "Success"

rx placement:
thread 1 on vring 1, polling

tx placement: spin-lock
thread 0 on vring 0
thread 1 on vring 0

Memory regions (total 2)
region fd guest_phys_addr memory_size userspace_addr mmap_offset
→˓ mmap_addr
====== ===== ================== ================== ==================
→˓================== =============== ===
0 31 0x0000000000000000 0x00000000000a0000 0x00007f1db9c00000

→˓0x0000000000000000 0x00007f7db0400 000
1 32 0x00000000000c0000 0x000000000ff40000 0x00007f1db9cc0000

→˓0x00000000000c0000 0x00007f7d94ec0 000

Virtqueue 0 (TX)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 0 avail.idx 256 used.flags 1 used.idx 0
kickfd 33 callfd 34 errfd -1

Virtqueue 1 (RX)
qsz 256 last_avail_idx 8 last_used_idx 8
avail.flags 0 avail.idx 8 used.flags 1 used.idx 8
kickfd 29 callfd 35 errfd -1

3.2. FD.io VPP with Virtual Machines 107

Vector Packet Processor Documentation, Release 0.1

3.2.5 Bridge the Interfaces

To connect the 2 interfaces we put them on an L2 bridge.

Use the “set interface l2 bridge” command.

vpp# set interface l2 bridge VirtualEthernet0/0/0 100
vpp# set interface l2 bridge TenGigabitEthernet86/0/0 100
vpp# show bridge

BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term
→˓BVI-Intf

100 1 0 off on on on on off
→˓N/A
vpp# show bridge 100 det

BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term
→˓BVI-Intf

100 1 0 off on on on on off
→˓N/A

Interface If-idx ISN SHG BVI TxFlood VLAN-Tag-Rewrite
VirtualEthernet0/0/0 3 1 0 - * none

TenGigabitEthernet86/0/0 1 1 0 - * none
vpp# show vhost

3.2.6 Bring the Interfaces Up

We can now bring all the pertinent interfaces up. We can then we will then be able to communicate with the VM from
the remote system running Linux.

Bring the interfaces up with Set Interface State command.

vpp# set interface state VirtualEthernet0/0/0 up
vpp# set interface state TenGigabitEthernet86/0/0 up
vpp# sh int

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 2

rx bytes 180
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up tx packets 2

tx bytes 180
local0 0 down

3.2.7 Ping from the VM

The remote Linux system has an ip address of “10.0.0.2” we can now reach it from the VM.

Use the “virsh console” command to attach to the VM. “ctrl-D” to exit.

$ virsh console iperf-server3
Connected to domain iperf-server3
Escape character is ^]

Ubuntu 16.04.3 LTS iperfvm ttyS0
.....

(continues on next page)

108 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

root@iperfvm:~# ping 10.0.0.2
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.285 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.154 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.159 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.208 ms

On VPP you can now see the packet counts increasing. The packets from the VM are seen as rx packets on Vir-
tualEthernet0/0/0, they are then bridged to TenGigabitEthernet86/0/0 and are seen leaving the system as tx packets.
The reverse is true on the way in.

vpp# sh int
Name Idx State Counter Count

TenGigabitEthernet86/0/0 1 up rx packets 16
rx bytes 1476
tx packets 14
tx bytes 1260

TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 14

rx bytes 1260
tx packets 16
tx bytes 1476

local0 0 down
vpp#

3.2.8 Cleanup

Destroy the VMs with “virsh destroy”

cto@tf-ucs-3:~$ virsh list
Id Name State

--
65 iperf-server3 running

cto@tf-ucs-3:~$ virsh destroy iperf-server3
Domain iperf-server3 destroyed

Delete the Virtual port in FD.io VPP

vpp# delete vhost-user VirtualEthernet0/0/0
vpp# show int

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 21

rx bytes 1928
tx packets 19
tx bytes 1694

TenGigabitEthernet86/0/1 2 down
local0 0 down

Restart FD.io VPP

service vpp restart
vppctl show int

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 down

(continues on next page)

3.2. FD.io VPP with Virtual Machines 109

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

TenGigabitEthernet86/0/1 2 down
local0 0 down

3.2.9 Limitations

There are some limitations when using the qemu vhost driver. Some are described in this section.

Performance

VPP performance with vHost is limited by the Qemu vHost driver. FD.io VPP 18.04 CSIT vHost testing shows with 2
threads, 2 cores and a Queue size of 1024 the maximum NDR throughput was about 7.5 Mpps. This is about the limit
at this time.

For all the details on the CSIT VM vhost connection refer to the CSIT VM vHost performance tests.

Features

These are the features not supported with FD.io VPP vHost.

• VPP implements vHost in device mode only. VPP is intended to work with Qemu which implements vHost in
driver mode, it does not implement vHost driver mode.

• VPP vHost implementation does not support checksum or transmit segmentation offload.

• VPP vHost implementation does not support packet receive filtering feature for controlling receive traffic.

3.2.10 The XML File

An example of a file that could be used with the virsh create command.

<domain type='kvm' id='54'>
<name>iperf-server</name>
<memory unit='KiB'>1048576</memory>
<currentMemory unit='KiB'>1048576</currentMemory>
<memoryBacking>
<hugepages>

<page size='2048' unit='KiB'/>
</hugepages>

</memoryBacking>
<vcpu placement='static'>1</vcpu>
<resource>
<partition>/machine</partition>

</resource>
<os>
<type arch='x86_64' machine='pc-i440fx-xenial'>hvm</type>
<boot dev='hd'/>

</os>
<features>
<acpi/>
<apic/>

</features>
<cpu mode='host-model'>

(continues on next page)

110 Chapter 3. Use Cases

https://docs.fd.io/csit/rls1804/report/vpp_performance_tests/packet_throughput_graphs/vm_vhost.html

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

<model fallback='allow'></model>
<numa>

<cell id='0' cpus='0' memory='262144' unit='KiB' memAccess='shared'/>
</numa>

</cpu>
<clock offset='utc'>
<timer name='rtc' tickpolicy='catchup'/>
<timer name='pit' tickpolicy='delay'/>
<timer name='hpet' present='no'/>

</clock>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<pm>
<suspend-to-mem enabled='no'/>
<suspend-to-disk enabled='no'/>

</pm>
<devices>
<emulator>/usr/bin/kvm</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='qcow2'/>
<source file='/tmp/xenial-mod.img'/>
<backingStore/>
<target dev='vda' bus='virtio'/>
<alias name='virtio-disk0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>

</disk>
<disk type='file' device='cdrom'>

<driver name='qemu' type='raw'/>
<source file='/scratch/jdenisco/sae/configs/cloud-config.iso'/>
<backingStore/>
<target dev='hda' bus='ide'/>
<readonly/>
<alias name='ide0-0-0'/>
<address type='drive' controller='0' bus='0' target='0' unit='0'/>

</disk>
<controller type='usb' index='0' model='ich9-ehci1'>

<alias name='usb'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x7'/>

</controller>
<controller type='pci' index='0' model='pci-root'>
<alias name='pci.0'/>

</controller>
<controller type='ide' index='0'>

<alias name='ide'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

</controller>
<controller type='virtio-serial' index='0'>

<alias name='virtio-serial0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</controller>
<interface type='vhostuser'>

<mac address='52:54:00:4c:47:f2'/>
<source type='unix' path='/tmp//vm00.sock' mode='server'/>
<model type='virtio'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

(continues on next page)

3.2. FD.io VPP with Virtual Machines 111

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

</interface>
<serial type='pty'>

<source path='/dev/pts/2'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/2'>
<source path='/dev/pts/2'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>
<input type='mouse' bus='ps2'/>
<input type='keyboard' bus='ps2'/>
<graphics type='vnc' port='5900' autoport='yes' listen='127.0.0.1'>
<listen type='address' address='127.0.0.1'/>

</graphics>
<memballoon model='virtio'>

<alias name='balloon0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/>

</memballoon>
</devices>
<seclabel type='dynamic' model='apparmor' relabel='yes'>
<label>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</label>
<imagelabel>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</imagelabel>

</seclabel>
</domain>

3.3 Using VPP as a Home Gateway

Vpp running on a small system (with appropriate NICs) makes a fine home gateway. The resulting system performs
far in excess of requirements: a TAG=vpp_debug image runs at a vector size of ~1.1 terminating a 90-mbit down /
10-mbit up cable modem connection.

At a minimum, install sshd and the isc-dhcp-server. If you prefer, you can use dnsmasq.

3.3.1 Configuration files

/etc/vpp/startup.conf:

unix {
nodaemon
log /var/log/vpp/vpp.log
full-coredump
cli-listen /run/vpp/cli.sock
startup-config /setup.gate
gid vpp

}
api-segment {

gid vpp
}
dpdk {

dev 0000:03:00.0
dev 0000:14:00.0

(continues on next page)

112 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

etc.
poll-sleep 10

}

isc-dhcp-server configuration:

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.10 192.168.1.99;
option routers 192.168.1.1;
option domain-name-servers 8.8.8.8;

}

If you decide to enable the vpp dns name resolver, substitute 192.168.1.2 for 8.8.8.8 in the dhcp server configuration.

/etc/ssh/sshd_config:

What ports, IPs and protocols we listen for
Port <REDACTED-high-number-port>
Change to no to disable tunnelled clear text passwords
PasswordAuthentication no

For your own comfort and safety, do NOT allow password authentication and do not answer ssh requests on port 22.
Experience shows several hack attempts per hour on port 22, but none (ever) on random high-number ports.

vpp configuration:

comment { This is the WAN interface }
set int state GigabitEthernet3/0/0 up
comment { set int mac address GigabitEthernet3/0/0 mac-to-clone-if-needed }
set dhcp client intfc GigabitEthernet3/0/0 hostname vppgate

comment { Create a BVI loopback interface}
loop create
set int l2 bridge loop0 1 bvi
set int ip address loop0 192.168.1.1/24
set int state loop0 up

comment { Add more inside interfaces as needed ... }
set int l2 bridge GigabitEthernet0/14/0 1
set int state GigabitEthernet0/14/0 up

comment { dhcp server and host-stack access }
tap connect lstack address 192.168.1.2/24
set int l2 bridge tapcli-0 1
set int state tapcli-0 up

comment { Configure NAT}
nat44 add interface address GigabitEthernet3/0/0
set interface nat44 in loop0 out GigabitEthernet3/0/0

comment { allow inbound ssh to the <REDACTED-high-number-port>
nat44 add static mapping local 192.168.1.2 <REDACTED> external GigabitEthernet3/0/0
→˓<REDACTED> tcp

comment { if you want to use the vpp DNS server, add the following }
comment { Remember to adjust the isc-dhcp-server configuration appropriately }
comment { nat44 add identity mapping external GigabitEthernet3/0/0 udp 53053 }

(continues on next page)

3.3. Using VPP as a Home Gateway 113

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

comment { bin dns_name_server_add_del 8.8.8.8 }
comment { bin dns_name_server_add_del 68.87.74.166 }
comment { bin dns_enable_disable }
comment { see patch below, which adds these commands }
service restart isc-dhcp-server
add default linux route via 192.168.1.1

3.3.2 Patches

You’ll need this patch to add the “service restart” and “add default linux route” commands:

diff --git a/src/vpp/vnet/main.c b/src/vpp/vnet/main.c
index 6e136e19..69189c93 100644
--- a/src/vpp/vnet/main.c
+++ b/src/vpp/vnet/main.c
@@ -18,6 +18,8 @@
#include <vlib/unix/unix.h>
#include <vnet/plugin/plugin.h>
#include <vnet/ethernet/ethernet.h>

+#include <vnet/ip/ip4_packet.h>
+#include <vnet/ip/format.h>
#include <vpp/app/version.h>
#include <vpp/api/vpe_msg_enum.h>
#include <limits.h>

@@ -400,6 +402,63 @@ VLIB_CLI_COMMAND (test_crash_command, static) = {

#endif

+static clib_error_t *
+restart_isc_dhcp_server_command_fn (vlib_main_t * vm,
+ unformat_input_t * input,
+ vlib_cli_command_t * cmd)
+{
+ int rv __attribute__((unused));
+ /* Wait three seconds... */
+ vlib_process_suspend (vm, 3.0);
+
+ rv = system ("/usr/sbin/service isc-dhcp-server restart");
+
+ vlib_cli_output (vm, "Restarted the isc-dhcp-server...");
+ return 0;
+}
+
+/* *INDENT-OFF* */
+VLIB_CLI_COMMAND (restart_isc_dhcp_server_command, static) = {
+ .path = "service restart isc-dhcp-server",
+ .short_help = "restarts the isc-dhcp-server",
+ .function = restart_isc_dhcp_server_command_fn,
+};
+/* *INDENT-ON* */
+
+static clib_error_t *
+add_default_linux_route_command_fn (vlib_main_t * vm,
+ unformat_input_t * input,
+ vlib_cli_command_t * c)

(continues on next page)

114 Chapter 3. Use Cases

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

+{
+ int rv __attribute__((unused));
+ ip4_address_t ip4_addr;
+ u8 *cmd;
+
+ if (!unformat (input, "%U", unformat_ip4_address, &ip4_addr))
+ return clib_error_return (0, "default gateway address required...");
+
+ cmd = format (0, "/sbin/route add -net 0.0.0.0/0 gw %U",
+ format_ip4_address, &ip4_addr);
+ vec_add1 (cmd, 0);
+
+ rv = system (cmd);
+
+ vlib_cli_output (vm, "%s", cmd);
+
+ vec_free(cmd);
+
+ return 0;
+}
+
+/* *INDENT-OFF* */
+VLIB_CLI_COMMAND (add_default_linux_route_command, static) = {
+ .path = "add default linux route via",
+ .short_help = "Adds default linux route: 0.0.0.0/0 via <addr>",
+ .function = add_default_linux_route_command_fn,
+};
+/* *INDENT-ON* */
+
+

3.3.3 Using the temporal mac filter plugin

If you need to restrict network access for certain devices to specific daily time ranges, configure the “mactime” plugin.
Enable the feature on the NAT “inside” interfaces:

bin mactime_enable_disable GigabitEthernet0/14/0
bin mactime_enable_disable GigabitEthernet0/14/1
...

Create the required src-mac-address rule database. There are 4 rule entry types:

• allow-static - pass traffic from this mac address

• drop-static - drop traffic from this mac address

• allow-range - pass traffic from this mac address at specific times

• drop-range - drop traffic from this mac address at specific times

Here are some examples:

bin mactime_add_del_range name alarm-system mac 00:de:ad:be:ef:00 allow-static
bin mactime_add_del_range name unwelcome mac 00:de:ad:be:ef:01 drop-static
bin mactime_add_del_range name not-during-business-hours mac <mac> drop-range Mon -
→˓Fri 7:59 - 18:01
bin mactime_add_del_range name monday-busines-hours mac <mac> allow-range Mon 7:59 -
→˓18:01 (continues on next page)

3.3. Using VPP as a Home Gateway 115

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

3.4 vSwitch/vRouter

3.4.1 FD.io VPP as a vSwitch/vRouter

Note: We need to provide commands and and show how to use VPP as a vSwitch/vRouter

One of the use cases for the FD.io VPP platform is to implement it as a virtual switch or router.
The following section describes examples of possible implementations that can be created with the
FD.io VPP platform. For more in depth descriptions about other possible use cases, see the list of

Fig. 2: Figure: Linux
host as a vSwitch

You can use the FD.io VPP platform to create out-of-the-box virtual switches (vSwitch) and
virtual routers (vRouter). The FD.io VPP platform allows you to manage certain functions
and configurations of these application through a command-line interface (CLI).

Some of the functionality that a switching application can create includes:

• Bridge Domains

• Ports (including tunnel ports)

• Connect ports to bridge domains

• Program ARP termination

Some of the functionality that a routing application can create includes:

• Virtual Routing and Forwarding (VRF) tables (in the thousands)

• Routes (in the millions)

116 Chapter 3. Use Cases

CHAPTER 4

Troubleshooting

This chapter describes some of the many techniques used to troubleshoot and diagnose problem with FD.io VPP
implementations.

4.1 CPU Load/Usage

There are various commands and tools that can help users see FD.io VPP CPU and memory usage at runtime.

4.1.1 Linux top/htop

The Linux top and htop are decent tools to look at FD.io VPP cpu and memory usage, but they will only show
preallocated memory and total CPU usage. These commands can be useful to show which cores VPP is running on.

This is an example of VPP instance that is running on cores 8 and 9. For this output type top and then type 1 when the
tool starts.

$ top

top - 11:04:04 up 35 days, 3:16, 5 users, load average: 2.33, 2.23, 2.16
Tasks: 435 total, 2 running, 432 sleeping, 1 stopped, 0 zombie
%Cpu0 : 1.0 us, 0.7 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
%Cpu1 : 2.0 us, 0.3 sy, 0.0 ni, 97.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 0.7 us, 1.0 sy, 0.0 ni, 98.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 1.7 us, 0.7 sy, 0.0 ni, 97.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu4 : 2.0 us, 0.7 sy, 0.0 ni, 97.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu5 : 3.0 us, 0.3 sy, 0.0 ni, 96.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 : 2.3 us, 0.7 sy, 0.0 ni, 97.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 : 2.6 us, 0.3 sy, 0.0 ni, 97.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu8 : 96.0 us, 0.3 sy, 0.0 ni, 3.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu9 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu10 : 1.0 us, 0.3 sy, 0.0 ni, 98.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
....

117

Vector Packet Processor Documentation, Release 0.1

4.1.2 VPP Memory Usage

For details on VPP memory usage you can use the show memory command

This is the example VPP memory usage on 2 cores.

vppctl show memory verbose
Thread 0 vpp_main
22043 objects, 17878k of 20826k used, 2426k free, 2396k reclaimed, 346k overhead,
→˓1048572k capacity
alloc. from small object cache: 22875 hits 39973 attempts (57.23%) replacements 5143
alloc. from free-list: 44732 attempts, 26017 hits (58.16%), 528461 considered (per-

→˓attempt 11.81)
alloc. from vector-expand: 3430
allocs: 52324 2027.84 clocks/call
frees: 30280 594.38 clocks/call

Thread 1 vpp_wk_0
22043 objects, 17878k of 20826k used, 2427k free, 2396k reclaimed, 346k overhead,
→˓1048572k capacity
alloc. from small object cache: 22881 hits 39984 attempts (57.23%) replacements 5148
alloc. from free-list: 44736 attempts, 26021 hits (58.17%), 528465 considered (per-

→˓attempt 11.81)
alloc. from vector-expand: 3430
allocs: 52335 2027.54 clocks/call
frees: 30291 594.36 clocks/call

4.1.3 VPP CPU Load

To find the VPP CPU load or how busy VPP is use the show runtime command.

With at least one interface in polling mode, the VPP CPU utilization is always 100%.

A good indicator of CPU load is “average vectors/node”. A bigger number means VPP is more busy but also more
efficient. The Maximum value is 255 (unless you change VLIB_FRAME_SIZE in code). It basically means how
many packets are processed in batch.

If VPP is not loaded it will likely poll so fast that it will just get one or few packets from the rx queue. This is the
case shown below on Thread 1. As load goes up vpp will have more work to do, so it will poll less frequently, and
that will result in more packets waiting in rx queue. More packets will result in more efficient execution of the code
so number of clock cycles / packet will go down. When “average vectors/node” goes up close to 255, you will likely
start observing rx queue tail drops.

vppctl show run
Thread 0 vpp_main (lcore 8)
Time 6152.9, average vectors/node 0.00, last 128 main loops 0.00 per node 0.00

vector rates in 0.0000e0, out 0.0000e0, drop 0.0000e0, punt 0.0000e0
Name State Calls Vectors

→˓Suspends Clocks Vectors/Call
acl-plugin-fa-cleaner-process event wait 0 0
→˓ 1 3.66e4 0.00
admin-up-down-process event wait 0 0
→˓ 1 2.54e3 0.00
....

Thread 1 vpp_wk_0 (lcore 9)
Time 6152.9, average vectors/node 1.00, last 128 main loops 0.00 per node 0.00

vector rates in 1.3073e2, out 1.3073e2, drop 6.5009e-4, punt 0.0000e0

(continues on next page)

118 Chapter 4. Troubleshooting

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

Name State Calls Vectors
→˓Suspends Clocks Vectors/Call
TenGigabitEthernet86/0/0-outpu active 804395 804395
→˓ 0 6.17e2 1.00
TenGigabitEthernet86/0/0-tx active 804395 804395
→˓ 0 7.29e2 1.00
arp-input active 2 2
→˓ 0 3.82e4 1.00
dpdk-input polling 24239296364 804398
→˓ 0 1.59e7 0.00
error-drop active 4 4
→˓ 0 4.65e3 1.00
ethernet-input active 2 2
→˓ 0 1.08e4 1.00
interface-output active 1 1
→˓ 0 3.78e3 1.00
ip4-glean active 1 1
→˓ 0 6.98e4 1.00
ip4-icmp-echo-request active 804394 804394
→˓ 0 5.02e2 1.00
ip4-icmp-input active 804394 804394
→˓ 0 4.63e2 1.00
ip4-input-no-checksum active 804394 804394
→˓ 0 8.51e2 1.00
ip4-load-balance active 804394 804394
→˓ 0 5.46e2 1.00
ip4-local active 804394 804394
→˓ 0 5.79e2 1.00
ip4-lookup active 804394 804394
→˓ 0 5.71e2 1.00
ip4-rewrite active 804393 804393
→˓ 0 5.69e2 1.00
ip6-input active 2 2
→˓ 0 5.72e3 1.00
ip6-not-enabled active 2 2
→˓ 0 1.56e4 1.00
unix-epoll-input polling 835722 0
→˓ 0 3.03e-3 0.00

4.1. CPU Load/Usage 119

Vector Packet Processor Documentation, Release 0.1

120 Chapter 4. Troubleshooting

CHAPTER 5

User Guides

5.1 Progressive VPP Tutorial

5.1.1 Introduction

This tutorial is designed for you to be able to run it on a single Ubuntu 16.04 VM on your laptop. It walks you through
some very basic vpp senarios, with a focus on learning vpp commands, doing common actions, and being able to
discover common things about the state of a running vpp.

This is not intended to be a ‘how to run in a production environment’ set of instructions.

5.1.2 Exercise: Setting up your environment

All of these exercises are designed to be performed on an Ubuntu 16.04 (Xenial) box.

If you have an Ubuntu 16.04 box on which you have sudo, you can feel free to use that.

If you do not, a Vagrantfile is provided to setup a basic Ubuntu 16.04 box for you

5.1.3 Vagrant Set Up

Action: Install Virtualbox

If you do not already have virtualbox on your laptop (or if it is not up to date), please download and install it:

https://www.virtualbox.org/wiki/Downloads

Action: Install Vagrant

If you do not already have Vagrant on your laptop (or if it is not up to date), please download it:

https://www.vagrantup.com/downloads.html

121

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Vector Packet Processor Documentation, Release 0.1

Action: Create a Vagrant Directory

Create a directory on your laptop

mkdir fdio-tutorial
cd fdio-tutorial/

Create a Vagrantfile

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

config.vm.box = "puppetlabs/ubuntu-16.04-64-nocm"
config.vm.box_check_update = false

vmcpu=(ENV['VPP_VAGRANT_VMCPU'] || 2)
vmram=(ENV['VPP_VAGRANT_VMRAM'] || 4096)

config.ssh.forward_agent = true

config.vm.provider "virtualbox" do |vb|
vb.customize ["modifyvm", :id, "--ioapic", "on"]
vb.memory = "#{vmram}"
vb.cpus = "#{vmcpu}"
#support for the SSE4.x instruction is required in some versions of VB.
vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.1", "1"]
vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.2", "1"]

end
end

Action: Vagrant Up

Bring up your Vagrant VM:

vagrant up

Action: ssh to Vagrant VM

vagrant ssh

5.1.4 Exercise: Install VPP

Skills to be Learned

• Learn how to install vpp binary packges using apt-get.

Follow the instructions at Installing VPP Binaries for installing xenial vpp packages from the release repo. Please
note, certain aspects of this tutorial require vpp 17.10 or later.

122 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

5.1.5 Exercise: VPP basics

Skills to be Learned

By the end of the exercise you should be able to:

• Run a vpp instance in a mode which allows multiple vpp processes to run

• Issue vpp commands from the unix shell

• Run a vpp shell and issue it commands

5.1.6 VPP command learned in this exercise

• show ver

5.1.7 Action: Remove dpdk plugin

In this tutorial, we will be running multiple vpp instances. DPDK does not work well with multiple instances, and so
to run multiple instances we will need to disable the dpdk-plugin by removing it:

sudo rm -rf /usr/lib/vpp_plugins/dpdk_plugin.so

..how-to-run-vpp:

5.1.8 Action: Run VPP

VPP runs in userspace. In a production environment you will often run it with DPDK to connect to real NICs or vhost
to connect to VMs. In those circumstances you usually run a single instance of vpp.

For purposes of this tutorial, it is going to be extremely useful to run multiple instances of vpp, and connect them to
each other to form a topology. Fortunately, vpp supports this.

When running multiple vpp instances, each instance needs to have specified a ‘name’ or ‘prefix’. In the example
below, the ‘name’ or ‘prefix’ is “vpp1”. Note that only one instance can use the dpdk plugin, since this plugin is trying
to acquire a lock on a file.

sudo vpp unix {cli-listen /run/vpp/cli-vpp1.sock} api-segment { prefix vpp1 }

Example Output:

vlib_plugin_early_init:230: plugin path /usr/lib/vpp_plugins

Please note:

• “api-segment {prefix vpp1}” tells vpp how to name the files in /dev/shm/ for your vpp instance differently from
the default.

• “unix {cli-listen /run/vpp/cli-vpp1.sock}” tells vpp to use a non-default socket file when being addressed by
vppctl.

If you can’t see the vpp process running on the host, activate the nodaemon option to better understand what is
happening

sudo vpp unix {nodaemon cli-listen /run/vpp/cli-vpp1.sock} api-segment { prefix vpp1 }

Example Output with errors from the dpdk plugin:

5.1. Progressive VPP Tutorial 123

https://docs.fd.io/vpp/17.04/clicmd_src_vpp_app.html#clicmd_show_version

Vector Packet Processor Documentation, Release 0.1

vlib_plugin_early_init:356: plugin path /usr/lib/vpp_plugins
load_one_plugin:184: Loaded plugin: acl_plugin.so (Access Control Lists)
load_one_plugin:184: Loaded plugin: dpdk_plugin.so (Data Plane Development Kit (DPDK))
load_one_plugin:184: Loaded plugin: flowprobe_plugin.so (Flow per Packet)
load_one_plugin:184: Loaded plugin: gtpu_plugin.so (GTPv1-U)
load_one_plugin:184: Loaded plugin: ila_plugin.so (Identifier-locator addressing for
→˓IPv6)
load_one_plugin:184: Loaded plugin: ioam_plugin.so (Inbound OAM)
load_one_plugin:114: Plugin disabled (default): ixge_plugin.so
load_one_plugin:184: Loaded plugin: kubeproxy_plugin.so (kube-proxy data plane)
load_one_plugin:184: Loaded plugin: l2e_plugin.so (L2 Emulation)
load_one_plugin:184: Loaded plugin: lb_plugin.so (Load Balancer)
load_one_plugin:184: Loaded plugin: libsixrd_plugin.so (IPv6 Rapid Deployment on IPv4
→˓Infrastructure (RFC5969))
load_one_plugin:184: Loaded plugin: memif_plugin.so (Packet Memory Interface
→˓(experimetal))
load_one_plugin:184: Loaded plugin: nat_plugin.so (Network Address Translation)
load_one_plugin:184: Loaded plugin: pppoe_plugin.so (PPPoE)
load_one_plugin:184: Loaded plugin: stn_plugin.so (VPP Steals the NIC for Container
→˓integration)
vpp[10211]: vlib_pci_bind_to_uio: Skipping PCI device 0000:00:03.0 as host interface
→˓eth0 is up
vpp[10211]: vlib_pci_bind_to_uio: Skipping PCI device 0000:00:04.0 as host interface
→˓eth1 is up
vpp[10211]: dpdk_config:1240: EAL init args: -c 1 -n 4 --huge-dir /run/vpp/hugepages -
→˓-file-prefix vpp -b 0000:00:03.0 -b 0000:00:04.0 --master-lcore 0 --socket-mem 64
EAL: No free hugepages reported in hugepages-1048576kB
EAL: Error - exiting with code: 1
Cause: Cannot create lock on '/var/run/.vpp_config'. Is another primary process
→˓running?

5.1.9 Action: Send commands to VPP using vppctl

You can send vpp commands with a utility called vppctl.

When running vppctl against a named version of vpp, you will need to run:

sudo vppctl -s /run/vpp/cli-${name}.sock ${cmd}

Note

/run/vpp/cli-${name}.sock

is the particular naming convention used in this tutorial. By default you can set vpp to use what ever socket file name
you would like at startup (the default config file uses /run/vpp/cli.sock) if two different vpps are being run (as in this
tutorial) you must use distinct socket files for each one.

So to run ‘show ver’ against the vpp instance named vpp1 you would run:

sudo vppctl -s /run/vpp/cli-vpp1.sock show ver

Output:

vpp v17.04-rc0~177-g006eb47 built by ubuntu on fdio-ubuntu1604-sevt at Mon Jan 30
→˓18:30:12 UTC 2017

124 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

5.1.10 Action: Start a VPP shell using vppctl

You can also use vppctl to launch a vpp shell with which you can run multiple vpp commands interactively by running:

sudo vppctl -s /run/vpp/cli-${name}.sock

which will give you a command prompt.

Try doing show ver that way:

sudo vppctl -s /run/vpp/cli-vpp1.sock
vpp# show ver

Output:

vpp v17.04-rc0~177-g006eb47 built by ubuntu on fdio-ubuntu1604-sevt at Mon Jan 30
→˓18:30:12 UTC 2017

vpp#

To exit the vppctl shell:

vpp# quit

5.1.11 Exercise: Create an interface

Skills to be Learned

1. Create a veth interface in Linux host

2. Assign an IP address to one end of the veth interface in the Linux host

3. Create a vpp host-interface that connected to one end of a veth interface via AF_PACKET

4. Add an ip address to a vpp interface

5. Setup a ‘trace’

6. View a ‘trace’

7. Clear a ‘trace’

8. Verify using ping from host

9. Ping from vpp

10. Examine Arp Table

11. Examine ip fib

VPP command learned in this exercise

1. create host-interface

2. set int state

3. set int ip address

4. show hardware

5. show int

5.1. Progressive VPP Tutorial 125

https://docs.fd.io/vpp/17.04/clicmd_src_vnet_devices_af_packet.html#clicmd_create_host-interface
https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_set_interface_state
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_set_interface_ip_address
https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_hardware-interfaces
https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_interfaces

Vector Packet Processor Documentation, Release 0.1

6. show int addr

7. trace add

8. clear trace

9. ping

10. show ip arp

11. show ip fib

Topology

Fig. 1: Figure: Create Interface Topology

Initial State

The initial state here is presumed to be the final state from the exercise VPP Basics

Action: Create veth interfaces on host

In Linux, there is a type of interface call ‘veth’. Think of a ‘veth’ interface as being an interface that has two ends to
it (rather than one).

Create a veth interface with one end named vpp1out and the other named vpp1host

126 Chapter 5. User Guides

https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_interfaces
https://docs.fd.io/vpp/17.04/clicmd_src_vlib.html#clicmd_trace_add
https://docs.fd.io/vpp/17.04/clicmd_src_vlib.html#clicmd_clear_trace
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_ping
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ethernet.html#clicmd_show_ip_arp
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_fib.html#clicmd_show_ip_fib

Vector Packet Processor Documentation, Release 0.1

sudo ip link add name vpp1out type veth peer name vpp1host

Turn up both ends:

sudo ip link set dev vpp1out up
sudo ip link set dev vpp1host up

Assign an IP address

sudo ip addr add 10.10.1.1/24 dev vpp1host

Display the result:

sudo ip addr show vpp1host

Example Output:

10: vpp1host@vpp1out: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
→˓UP group default qlen 1000

link/ether 5e:97:e3:41:aa:b8 brd ff:ff:ff:ff:ff:ff
inet 10.10.1.1/24 scope global vpp1host

valid_lft forever preferred_lft forever
inet6 fe80::5c97:e3ff:fe41:aab8/64 scope link

valid_lft forever preferred_lft forever

Action: Create vpp host- interface

Create a host interface attached to vpp1out.

sudo vppctl -s /run/vpp/cli-vpp1.sock create host-interface name vpp1out

Output:

host-vpp1out

Confirm the interface:

sudo vppctl -s /run/vpp/cli-vpp1.sock show hardware

Example Output:

Name Idx Link Hardware
host-vpp1out 1 up host-vpp1out

Ethernet address 02:fe:48:ec:d5:a7
Linux PACKET socket interface

local0 0 down local0
local

Turn up the interface:

sudo vppctl -s /run/vpp/cli-vpp1.sock set int state host-vpp1out up

Confirm the interface is up:

sudo vppctl -s /run/vpp/cli-vpp1.sock show int

5.1. Progressive VPP Tutorial 127

Vector Packet Processor Documentation, Release 0.1

Name Idx State Counter Count
host-vpp1out 1 up
local0 0 down

Assign ip address 10.10.1.2/24

sudo vppctl -s /run/vpp/cli-vpp1.sock set int ip address host-vpp1out 10.10.1.2/24

Confirm the ip address is assigned:

sudo vppctl -s /run/vpp/cli-vpp1.sock show int addr

host-vpp1out (up):
10.10.1.2/24

local0 (dn):

Action: Add trace

sudo vppctl -s /run/vpp/cli-vpp1.sock trace add af-packet-input 10

Action: Ping from host to vpp

ping -c 1 10.10.1.2

PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data.
64 bytes from 10.10.1.2: icmp_seq=1 ttl=64 time=0.557 ms

--- 10.10.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.557/0.557/0.557/0.000 ms

Action: Examine Trace of ping from host to vpp

sudo vppctl -s /run/vpp/cli-vpp1.sock show trace

------------------- Start of thread 0 vpp_main -------------------
Packet 1

00:09:30:397798: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 42 snaplen 42 mac 66 net 80
sec 0x588fd3ac nsec 0x375abde7 vlan 0 vlan_tpid 0

00:09:30:397906: ethernet-input
ARP: fa:13:55:ac:d9:50 -> ff:ff:ff:ff:ff:ff

00:09:30:397912: arp-input
request, type ethernet/IP4, address size 6/4
fa:13:55:ac:d9:50/10.10.1.1 -> 00:00:00:00:00:00/10.10.1.2

00:09:30:398191: host-vpp1out-output

(continues on next page)

128 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

host-vpp1out
ARP: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
reply, type ethernet/IP4, address size 6/4
02:fe:48:ec:d5:a7/10.10.1.2 -> fa:13:55:ac:d9:50/10.10.1.1

Packet 2

00:09:30:398227: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 98 snaplen 98 mac 66 net 80
sec 0x588fd3ac nsec 0x37615060 vlan 0 vlan_tpid 0

00:09:30:398295: ethernet-input
IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:09:30:398298: ip4-input
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x9b46
fragment id 0x894c, flags DONT_FRAGMENT

ICMP echo_request checksum 0x83c
00:09:30:398300: ip4-lookup

fib 0 dpo-idx 5 flow hash: 0x00000000
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x9b46
fragment id 0x894c, flags DONT_FRAGMENT

ICMP echo_request checksum 0x83c
00:09:30:398303: ip4-local

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x9b46
fragment id 0x894c, flags DONT_FRAGMENT

ICMP echo_request checksum 0x83c
00:09:30:398305: ip4-icmp-input

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x9b46
fragment id 0x894c, flags DONT_FRAGMENT

ICMP echo_request checksum 0x83c
00:09:30:398307: ip4-icmp-echo-request

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x9b46
fragment id 0x894c, flags DONT_FRAGMENT

ICMP echo_request checksum 0x83c
00:09:30:398317: ip4-load-balance

fib 0 dpo-idx 10 flow hash: 0x0000000e
ICMP: 10.10.1.2 -> 10.10.1.1
tos 0x00, ttl 64, length 84, checksum 0xbef3
fragment id 0x659f, flags DONT_FRAGMENT

ICMP echo_reply checksum 0x103c
00:09:30:398318: ip4-rewrite

tx_sw_if_index 1 dpo-idx 2 : ipv4 via 10.10.1.1 host-vpp1out: IP4:
→˓02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50 flow hash: 0x00000000
IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
ICMP: 10.10.1.2 -> 10.10.1.1
tos 0x00, ttl 64, length 84, checksum 0xbef3
fragment id 0x659f, flags DONT_FRAGMENT

ICMP echo_reply checksum 0x103c
00:09:30:398320: host-vpp1out-output

host-vpp1out
IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50

(continues on next page)

5.1. Progressive VPP Tutorial 129

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

ICMP: 10.10.1.2 -> 10.10.1.1
tos 0x00, ttl 64, length 84, checksum 0xbef3
fragment id 0x659f, flags DONT_FRAGMENT

ICMP echo_reply checksum 0x103c

Action: Clear trace buffer

sudo vppctl -s /run/vpp/cli-vpp1.sock clear trace

Action: ping from vpp to host

sudo vppctl -s /run/vpp/cli-vpp1.sock ping 10.10.1.1

64 bytes from 10.10.1.1: icmp_seq=1 ttl=64 time=.0865 ms
64 bytes from 10.10.1.1: icmp_seq=2 ttl=64 time=.0914 ms
64 bytes from 10.10.1.1: icmp_seq=3 ttl=64 time=.0943 ms
64 bytes from 10.10.1.1: icmp_seq=4 ttl=64 time=.0959 ms
64 bytes from 10.10.1.1: icmp_seq=5 ttl=64 time=.0858 ms

Statistics: 5 sent, 5 received, 0% packet loss

Action: Examine Trace of ping from vpp to host

sudo vppctl -s /run/vpp/cli-vpp1.sock show trace

------------------- Start of thread 0 vpp_main -------------------
Packet 1

00:12:47:155326: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 98 snaplen 98 mac 66 net 80
sec 0x588fd471 nsec 0x161c61ad vlan 0 vlan_tpid 0

00:12:47:155331: ethernet-input
IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:12:47:155334: ip4-input
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2604
fragment id 0x3e8f

ICMP echo_reply checksum 0x1a83
00:12:47:155335: ip4-lookup

fib 0 dpo-idx 5 flow hash: 0x00000000
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2604
fragment id 0x3e8f

ICMP echo_reply checksum 0x1a83
00:12:47:155336: ip4-local

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2604

(continues on next page)

130 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

fragment id 0x3e8f
ICMP echo_reply checksum 0x1a83

00:12:47:155339: ip4-icmp-input
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2604
fragment id 0x3e8f

ICMP echo_reply checksum 0x1a83
00:12:47:155342: ip4-icmp-echo-reply

ICMP echo id 17572 seq 1
00:12:47:155349: error-drop

ip4-icmp-input: unknown type

Packet 2

00:12:48:155330: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 98 snaplen 98 mac 66 net 80
sec 0x588fd472 nsec 0x1603e95b vlan 0 vlan_tpid 0

00:12:48:155337: ethernet-input
IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:12:48:155341: ip4-input
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2565
fragment id 0x3f2e

ICMP echo_reply checksum 0x7405
00:12:48:155343: ip4-lookup

fib 0 dpo-idx 5 flow hash: 0x00000000
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2565
fragment id 0x3f2e

ICMP echo_reply checksum 0x7405
00:12:48:155344: ip4-local

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2565
fragment id 0x3f2e

ICMP echo_reply checksum 0x7405
00:12:48:155346: ip4-icmp-input

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2565
fragment id 0x3f2e

ICMP echo_reply checksum 0x7405
00:12:48:155348: ip4-icmp-echo-reply

ICMP echo id 17572 seq 2
00:12:48:155351: error-drop

ip4-icmp-input: unknown type

Packet 3

00:12:49:155331: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 98 snaplen 98 mac 66 net 80
sec 0x588fd473 nsec 0x15eb77ef vlan 0 vlan_tpid 0

00:12:49:155337: ethernet-input
IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:12:49:155341: ip4-input
(continues on next page)

5.1. Progressive VPP Tutorial 131

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x249e
fragment id 0x3ff5

ICMP echo_reply checksum 0xf446
00:12:49:155343: ip4-lookup

fib 0 dpo-idx 5 flow hash: 0x00000000
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x249e
fragment id 0x3ff5

ICMP echo_reply checksum 0xf446
00:12:49:155345: ip4-local

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x249e
fragment id 0x3ff5

ICMP echo_reply checksum 0xf446
00:12:49:155349: ip4-icmp-input

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x249e
fragment id 0x3ff5

ICMP echo_reply checksum 0xf446
00:12:49:155350: ip4-icmp-echo-reply

ICMP echo id 17572 seq 3
00:12:49:155354: error-drop

ip4-icmp-input: unknown type

Packet 4

00:12:50:155335: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 98 snaplen 98 mac 66 net 80
sec 0x588fd474 nsec 0x15d2ffb6 vlan 0 vlan_tpid 0

00:12:50:155341: ethernet-input
IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:12:50:155346: ip4-input
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2437
fragment id 0x405c

ICMP echo_reply checksum 0x5b6e
00:12:50:155347: ip4-lookup

fib 0 dpo-idx 5 flow hash: 0x00000000
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2437
fragment id 0x405c

ICMP echo_reply checksum 0x5b6e
00:12:50:155350: ip4-local

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2437
fragment id 0x405c

ICMP echo_reply checksum 0x5b6e
00:12:50:155351: ip4-icmp-input

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x2437
fragment id 0x405c

ICMP echo_reply checksum 0x5b6e
00:12:50:155353: ip4-icmp-echo-reply

ICMP echo id 17572 seq 4
(continues on next page)

132 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

00:12:50:155356: error-drop
ip4-icmp-input: unknown type

Packet 5

00:12:51:155324: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 98 snaplen 98 mac 66 net 80
sec 0x588fd475 nsec 0x15ba8726 vlan 0 vlan_tpid 0

00:12:51:155331: ethernet-input
IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:12:51:155335: ip4-input
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x23cc
fragment id 0x40c7

ICMP echo_reply checksum 0xedb3
00:12:51:155337: ip4-lookup

fib 0 dpo-idx 5 flow hash: 0x00000000
ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x23cc
fragment id 0x40c7

ICMP echo_reply checksum 0xedb3
00:12:51:155338: ip4-local

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x23cc
fragment id 0x40c7

ICMP echo_reply checksum 0xedb3
00:12:51:155341: ip4-icmp-input

ICMP: 10.10.1.1 -> 10.10.1.2
tos 0x00, ttl 64, length 84, checksum 0x23cc
fragment id 0x40c7

ICMP echo_reply checksum 0xedb3
00:12:51:155343: ip4-icmp-echo-reply

ICMP echo id 17572 seq 5
00:12:51:155346: error-drop

ip4-icmp-input: unknown type

Packet 6

00:12:52:175185: af-packet-input
af_packet: hw_if_index 1 next-index 4
tpacket2_hdr:

status 0x20000001 len 42 snaplen 42 mac 66 net 80
sec 0x588fd476 nsec 0x16d05dd0 vlan 0 vlan_tpid 0

00:12:52:175195: ethernet-input
ARP: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7

00:12:52:175200: arp-input
request, type ethernet/IP4, address size 6/4
fa:13:55:ac:d9:50/10.10.1.1 -> 00:00:00:00:00:00/10.10.1.2

00:12:52:175214: host-vpp1out-output
host-vpp1out
ARP: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
reply, type ethernet/IP4, address size 6/4
02:fe:48:ec:d5:a7/10.10.1.2 -> fa:13:55:ac:d9:50/10.10.1.1

After examinging the trace, clear it again.

5.1. Progressive VPP Tutorial 133

Vector Packet Processor Documentation, Release 0.1

Action: Examine arp tables

sudo vppctl -s /run/vpp/cli-vpp1.sock show ip arp

Time IP4 Flags Ethernet Interface
570.4092 10.10.1.1 D fa:13:55:ac:d9:50 host-vpp1out

Action: Examine routing table

sudo vppctl -s /run/vpp/cli-vpp1.sock show ip fib

ipv4-VRF:0, fib_index 0, flow hash: src dst sport dport proto
0.0.0.0/0

unicast-ip4-chain
[@0]: dpo-load-balance: [index:0 buckets:1 uRPF:0 to:[0:0]]
[0] [@0]: dpo-drop ip4

0.0.0.0/32
unicast-ip4-chain
[@0]: dpo-load-balance: [index:1 buckets:1 uRPF:1 to:[0:0]]
[0] [@0]: dpo-drop ip4

10.10.1.1/32
unicast-ip4-chain
[@0]: dpo-load-balance: [index:10 buckets:1 uRPF:9 to:[5:420] via:[1:84]]
[0] [@5]: ipv4 via 10.10.1.1 host-vpp1out: IP4: 02:fe:48:ec:d5:a7 ->

→˓fa:13:55:ac:d9:50
10.10.1.0/24

unicast-ip4-chain
[@0]: dpo-load-balance: [index:8 buckets:1 uRPF:7 to:[0:0]]
[0] [@4]: ipv4-glean: host-vpp1out

10.10.1.2/32
unicast-ip4-chain
[@0]: dpo-load-balance: [index:9 buckets:1 uRPF:8 to:[6:504]]
[0] [@2]: dpo-receive: 10.10.1.2 on host-vpp1out

224.0.0.0/4
unicast-ip4-chain
[@0]: dpo-load-balance: [index:3 buckets:1 uRPF:3 to:[0:0]]
[0] [@0]: dpo-drop ip4

240.0.0.0/4
unicast-ip4-chain
[@0]: dpo-load-balance: [index:2 buckets:1 uRPF:2 to:[0:0]]
[0] [@0]: dpo-drop ip4

255.255.255.255/32
unicast-ip4-chain
[@0]: dpo-load-balance: [index:4 buckets:1 uRPF:4 to:[0:0]]
[0] [@0]: dpo-drop ip4

5.1.12 Exercise: Connecting two vpp instances

Background

memif is a very high performance, direct memory interface type which can be used between vpp instances to form a
topology. It uses a file socket for a control channel to set up that shared memory.

134 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

Skills to be Learned

You will learn the following new skill in this exercise:

1. Create a memif interface between two vpp instances

You should be able to perform this exercise with the following skills learned in previous exercises:

1. Run a second vpp instance

2. Add an ip address to a vpp interface

3. Ping from vpp

Topology

Fig. 2: Connect two vpp topolgy

Initial state

The initial state here is presumed to be the final state from the exercise Create an Interface

5.1. Progressive VPP Tutorial 135

Vector Packet Processor Documentation, Release 0.1

Action: Running a second vpp instances

You should already have a vpp instance running named: vpp1.

Run a second vpp instance named: vpp2.

Action: Create memif interface on vpp1

Create a memif interface on vpp1:

sudo vppctl -s /run/vpp/cli-vpp1.sock create memif id 0 master

This will create an interface on vpp1 memif0/0 using /run/vpp/memif as its socket file. The role of vpp1 for this memif
inteface is ‘master’.

Use your previously used skills to:

1. Set the memif0/0 state to up.

2. Assign IP address 10.10.2.1/24 to memif0/0

3. Examine memif0/0 via show commands

Action: Create memif interface on vpp2

We want vpp2 to pick up the ‘slave’ role using the same run/vpp/memif-vpp1vpp2 socket file

sudo vppctl -s /run/vpp/cli-vpp2.sock create memif id 0 slave

This will create an interface on vpp2 memif0/0 using /run/vpp/memif as its socket file. The role of vpp1 for this memif
inteface is ‘slave’.

Use your previously used skills to:

1. Set the memif0/0 state to up.

2. Assign IP address 10.10.2.2/24 to memif0/0

3. Examine memif0/0 via show commands

Action: Ping from vpp1 to vpp2

Ping 10.10.2.2 from vpp1

Ping 10.10.2.1 from vpp2

5.1.13 Exercise: Routing

Skills to be Learned

In this exercise you will learn these new skills:

1. Add route to Linux Host routing table

2. Add route to vpp routing table

And revisit the old ones:

136 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

1. Examine vpp routing table

2. Enable trace on vpp1 and vpp2

3. ping from host to vpp

4. Examine and clear trace on vpp1 and vpp2

5. ping from vpp to host

6. Examine and clear trace on vpp1 and vpp2

vpp command learned in this exercise

1. ip route add

Topology

Fig. 3: Connect two vpp topology

5.1. Progressive VPP Tutorial 137

https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_ip_route

Vector Packet Processor Documentation, Release 0.1

Initial State

The initial state here is presumed to be the final state from the exercise Connecting two vpp instances

Action: Setup host route

sudo ip route add 10.10.2.0/24 via 10.10.1.2
ip route

default via 10.0.2.2 dev enp0s3
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15
10.10.1.0/24 dev vpp1host proto kernel scope link src 10.10.1.1
10.10.2.0/24 via 10.10.1.2 dev vpp1host

Setup return route on vpp2

sudo vppctl -s /run/vpp/cli-vpp2.sock ip route add 10.10.1.0/24 via 10.10.2.1

Ping from host through vpp1 to vpp2

1. Setup a trace on vpp1 and vpp2

2. Ping 10.10.2.2 from the host

3. Examine the trace on vpp1 and vpp2

4. Clear the trace on vpp1 and vpp2

5.1.14 Exercise: Switching

Skills to be Learned

1. Associate an interface with a bridge domain

2. Create a loopback interaface

3. Create a BVI (Bridge Virtual Interface) for a bridge domain

4. Examine a bridge domain

vpp command learned in this exercise

1. show bridge

2. show bridge detail

3. set int l2 bridge

4. show l2fib verbose

138 Chapter 5. User Guides

https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_bridge-domain
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_bridge-domain
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_set_interface_l2_bridge
https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_l2fib

Vector Packet Processor Documentation, Release 0.1

Fig. 4: Switching Topology

5.1. Progressive VPP Tutorial 139

Vector Packet Processor Documentation, Release 0.1

Topology

Initial state

Unlike previous exercises, for this one you want to start tabula rasa.

Note: You will lose all your existing config in your vpp instances!

To clear existing config from previous exercises run:

ps -ef | grep vpp | awk '{print $2}'| xargs sudo kill
sudo ip link del dev vpp1host
sudo ip link del dev vpp1vpp2

Action: Run vpp instances

1. Run a vpp instance named vpp1

2. Run a vpp instance named vpp2

Action: Connect vpp1 to host

1. Create a veth with one end named vpp1host and the other named vpp1out.

2. Connect vpp1out to vpp1

3. Add ip address 10.10.1.1/24 on vpp1host

Action: Connect vpp1 to vpp2

1. Create a veth with one end named vpp1vpp2 and the other named vpp2vpp1.

2. Connect vpp1vpp2 to vpp1.

3. Connect vpp2vpp1 to vpp2.

Action: Configure Bridge Domain on vpp1

Check to see what bridge domains already exist, and select the first bridge domain number not in use:

sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain

ID Index Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
0 0 off off off off off local0

In the example above, there is bridge domain ID ‘0’ already. Even though sometimes we might get feedback as below:

no bridge-domains in use

the bridge domain ID ‘0’ still exists, where no operations are supported. For instance, if we try to add host-vpp1out
and host-vpp1vpp2 to bridge domain ID 0, we will get nothing setup.

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1out 0
sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1vpp2 0
sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain 0 detail

140 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

show bridge-domain: No operations on the default bridge domain are supported

So we will create bridge domain 1 instead of playing with the default bridge domain ID 0.

Add host-vpp1out to bridge domain ID 1

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1out 1

Add host-vpp1vpp2 to bridge domain ID1

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1vpp2 1

Examine bridge domain 1:

sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain 1 detail

BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-
→˓Intf
1 1 0 off on on on on off N/A

Interface If-idx ISN SHG BVI TxFlood VLAN-Tag-Rewrite
host-vpp1out 1 1 0 - * none
host-vpp1vpp2 2 1 0 - * none

Action: Configure loopback interface on vpp2

sudo vppctl -s /run/vpp/cli-vpp2.sock create loopback interface

loop0

Add the ip address 10.10.1.2/24 to vpp2 interface loop0. Set the state of interface loop0 on vpp2 to ‘up’

Action: Configure bridge domain on vpp2

Check to see the first available bridge domain ID (it will be 1 in this case)

Add interface loop0 as a bridge virtual interface (bvi) to bridge domain 1

sudo vppctl -s /run/vpp/cli-vpp2.sock set int l2 bridge loop0 1 bvi

Add interface vpp2vpp1 to bridge domain 1

sudo vppctl -s /run/vpp/cli-vpp2.sock set int l2 bridge host-vpp2vpp1 1

Examine the bridge domain and interfaces.

Action: Ping from host to vpp and vpp to host

1. Add trace on vpp1 and vpp2

2. ping from host to 10.10.1.2

3. Examine and clear trace on vpp1 and vpp2

4. ping from vpp2 to 10.10.1.1

5.1. Progressive VPP Tutorial 141

Vector Packet Processor Documentation, Release 0.1

5. Examine and clear trace on vpp1 and vpp2

Action: Examine l2 fib

sudo vppctl -s /run/vpp/cli-vpp1.sock show l2fib verbose

Mac Address BD Idx Interface Index static filter bvi
→˓Mac Age (min)
de:ad:00:00:00:00 1 host-vpp1vpp2 2 0 0 0
→˓ disabled
c2:f6:88:31:7b:8e 1 host-vpp1out 1 0 0 0
→˓ disabled
2 l2fib entries

sudo vppctl -s /run/vpp/cli-vpp2.sock show l2fib verbose

Mac Address BD Idx Interface Index static filter bvi
→˓Mac Age (min)
de:ad:00:00:00:00 1 loop0 2 1 0 1
→˓ disabled
c2:f6:88:31:7b:8e 1 host-vpp2vpp1 1 0 0 0
→˓ disabled
2 l2fib entries

5.1.15 Source NAT

Skills to be Learned

1. Abusing networks namespaces for fun and profit

2. Configuring snat address

3. Configuring snat inside and outside interfaces

vpp command learned in this exercise

1. snat add interface address

2. set interface snat

Topology

Initial state

Unlike previous exercises, for this one you want to start tabula rasa.

Note: You will lose all your existing config in your vpp instances!

To clear existing config from previous exercises run:

ps -ef | grep vpp | awk '{print $2}'| xargs sudo kill
sudo ip link del dev vpp1host
sudo ip link del dev vpp1vpp2

142 Chapter 5. User Guides

https://docs.fd.io/vpp/17.04/clicmd_src_plugins_snat.html#clicmd_snat_add_interface_address
https://docs.fd.io/vpp/17.04/clicmd_src_plugins_snat.html#clicmd_set_interface_snat

Vector Packet Processor Documentation, Release 0.1

Fig. 5: SNAT Topology

Action: Install vpp-plugins

Snat is supported by a plugin, so vpp-plugins need to be installed

sudo apt-get install vpp-plugins

Action: Create vpp instance

Create one vpp instance named vpp1.

Confirm snat plugin is present:

sudo vppctl -s /run/vpp/cli-vpp1.sock show plugins

Plugin path is: /usr/lib/vpp_plugins
Plugins loaded:
1.ioam_plugin.so
2.ila_plugin.so
3.acl_plugin.so
4.flowperpkt_plugin.so
5.snat_plugin.so
6.libsixrd_plugin.so
7.lb_plugin.so

Action: Create veth interfaces

1. Create a veth interface with one end named vpp1outside and the other named vpp1outsidehost

2. Assign IP address 10.10.1.1/24 to vpp1outsidehost

3. Create a veth interface with one end named vpp1inside and the other named vpp1insidehost

4. Assign IP address 10.10.2.1/24 to vpp1outsidehost

Because we’d like to be able to route *via* our vpp instance to an interface on the same host, we are going to put
vpp1insidehost into a network namespace

Create a new network namespace ‘inside’

5.1. Progressive VPP Tutorial 143

Vector Packet Processor Documentation, Release 0.1

sudo ip netns add inside

Move interface vpp1inside into the ‘inside’ namespace:

sudo ip link set dev vpp1insidehost up netns inside

Assign an ip address to vpp1insidehost

sudo ip netns exec inside ip addr add 10.10.2.1/24 dev vpp1insidehost

Create a route inside the netns:

sudo ip netns exec inside ip route add 10.10.1.0/24 via 10.10.2.2

Action: Configure vpp outside interface

1. Create a vpp host interface connected to vpp1outside

2. Assign ip address 10.10.1.2/24

3. Create a vpp host interface connected to vpp1inside

4. Assign ip address 10.10.2.2/24

Action: Configure snat

Configure snat to use the address of host-vpp1outside

sudo vppctl -s /run/vpp/cli-vpp1.sock snat add interface address host-vpp1outside

Configure snat inside and outside interfaces

sudo vppctl -s /run/vpp/cli-vpp1.sock set interface snat in host-vpp1inside out host-
→˓vpp1outside

Action: Prepare to Observe Snat

Observing snat in this configuration is interesting. To do so, vagrant ssh a second time into your VM and run:

sudo tcpdump -s 0 -i vpp1outsidehost

Also enable tracing on vpp1

Action: Ping via snat

sudo ip netns exec inside ping -c 1 10.10.1.1

Action: Confirm snat

Examine the tcpdump output and vpp1 trace to confirm snat occurred.

144 Chapter 5. User Guides

Vector Packet Processor Documentation, Release 0.1

5.2 API User Guides

This chapter describes how to use the C, Python and java APIs.

5.2.1 Downloading the jvpp jar

The following are instructions on how to download the jvpp jar

Getting jvpp jar

VPP provides java bindings which can be downloaded at:

• https://nexus.fd.io/content/repositories/fd.io.release/io/fd/vpp/jvpp-core/18.01/jvpp-core-18.01.jar

Getting jvpp via maven

1. Add the following to the repositories section in your ~/.m2/settings.xml to pick up the fd.io maven repo:

<repository>
<id>fd.io-release</id>
<name>fd.io-release</name>
<url>https://nexus.fd.io/content/repositories/fd.io.release/</url>
<releases>
<enabled>false</enabled>

</releases>
<snapshots>
<enabled>true</enabled>

</snapshots>
</repository>

For more information on setting up maven repositories in settings.xml, please look at:

• https://maven.apache.org/guides/mini/guide-multiple-repositories.html

2. Then you can get jvpp by putting in the dependencies section of your pom.xml file:

<dependency>
<groupId>io.fd.vpp</groupId>
<artifactId>jvpp-core</artifactId>
<version>17.10</version>

</dependency>

For more information on maven dependency managment, please look at:

• https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

5.2. API User Guides 145

https://nexus.fd.io/content/repositories/fd.io.release/io/fd/vpp/jvpp-core/18.01/jvpp-core-18.01.jar
https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Vector Packet Processor Documentation, Release 0.1

146 Chapter 5. User Guides

CHAPTER 6

Events

6.1 Conferences

6.1.1 August 2017 - Linuxcon NA 2016

Intro to fd.io

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

ONE-LISP Intro

Event

This presentation was held during the on th, 201.

147

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.1.2 June 2017 - Cisco Live US

VPP and container networking at 110Gbps

Event

This presentation was held during the on June 26th, 2017.

Speakers

Keith Burns

Slideshow

Presentation Powerpoint

Video

‘Video Presentation <>‘_

6.1.3 May 2017 - OSCON

40Gbps IPsec on commodity hardware

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

148 Chapter 6. Events

https://wiki.fd.io/images/7/7b/Cisco_Live_VPP_and_container_networking_%28BRKSDN-2119%29.pptx

Vector Packet Processor Documentation, Release 0.1

Video

‘Video Presentation <>‘_

6.2 Summits

6.2.1 December 2017 - FD.io Mini Summit at KubeCon 2017

Arm Rallying the Ecosystem Around FD.io

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Benchmarking and Analysis of Software Network Data Planes

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Empowering the User Space Stack on Cloud Native Applications

Event

This presentation was held during the on th, 201.

6.2. Summits 149

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

VPP Host Stack

Event

This presentation was held during the FD.io Mini Summit at KubeCon 2017 on December 5th, 2017.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.2.2 November 2017 - DPDK Summit

DPDK Summit is a DPDK community event held around the world.

VPP Host Stack

Event

Although packet forwarding with VPP and DPDK can now scale to tens of millions of packets per second per core,
lack of alternatives to kernel-based sockets means that containers and host applications cannot take full advantage of
this speed. To fill this gap, VPP was recently added functionality specifically designed to allow containerized or host
applications to communicate via shared-memory if co-located, or via a high-performance TCP stack inter-host.

This presentation was held during the 2017 DPDK Summit on September 26th, 2017.

Speakers

• Florin Coras

• Dave Barach

• Keith Burns

150 Chapter 6. Events

Vector Packet Processor Documentation, Release 0.1

• Dave Wallace

Slideshow

Presentation PDF

Video

Video Presentation

DPDK, VPP and pfSense 3.0

Event

pfSense is a open source firewall/vpn appliance, based on FreeBSD, started in 2006 with over 1M active installs. We
are basing pfSense release 3.0 on FD.io’s VPP, leveraging key DPDK components including cryptodev, while adding
a CLI and RESTCONF layer, leveraging FRRouting and Strongswan.

This presentation was held during the 2017 DPDK Summit on September 26th, 2017.

Speakers

• Jim Thompson

Slideshow

Presentation PDF

Video

Video Presentation

6.2.3 September 2017 - Open Source Summit 2017

September 2017 - FD.io: The Universal Network Dataplane

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

6.2. Summits 151

https://wiki.fd.io/images/f/f2/Vpp-hoststack.pdf
https://www.youtube.com/watch?v=NWG7A0are00
https://www.youtube.com/watch?v=lMJy8vKm47E

Vector Packet Processor Documentation, Release 0.1

Video

‘Video Presentation <>‘_

6.2.4 May 2017 - FD.io Mini Summit @ Open Stack, Boston

Performance Considerations for Packet Processing on Intel Architecture

Event

FD.io VPP is a modular, fast, scalable and deterministic data plane for NFV network workloads. Some common uses
cases for VPP are as a vSwitch, a L3 Router, a vTEP, a Load Balancer, sockets applications and so much more, out of
the box - no hacking required! It is optimized to take advantage of Intel Architecture Core and Platform accelerations
to accelerate dataplane packet processing. It is permissively licensed as Apache 2, with a welcoming community of
active developers behind it. It is extensible and can be used as an excellent set of building blocks to accelerate your
next development project.

This presentation covers the following content: * Introduction to the architecture and design of VPP. * A walk through
common VPP use cases, cloud and NFV integration. * Creating Network Nodes: accelerating VPP IPSEC with Intel
Technologies. * Performance analysis on Intel Architecture.

This presentation was held during the on May 10th, 2017.

Speakers

• Patrick Lu

• Sergio Gonzalez Monroy

Slideshow

Presentation Powerpoint

Video

Video Presentation

6.2.5 April 2017 - UKNOF37

FD.io: building bespoke software data plane network functions

Event

This presentation was held during the on th, 201.

152 Chapter 6. Events

https://wiki.fd.io/images/7/7b/Performance_Consideration_for_packet_processing_on_Intel_Architecture.pptx
https://www.youtube.com/watch?v=Pt7E1lXZO90

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.2.6 February 2017 - OPNFV CSIT Readout Call

FD.io CSIT project readout to OPNFV project

Slides

Used At The Event: Updated

6.2.7 August 2016 - DPDK Summit

TLDK intro

Event

This presentation describes the Transport Layer Development Kit (TLDK), which is an FD.io project that provides
a set of libraries to accelerate L4-L7 protocol processing for DPDK-based applications. The initial implementation
supports UDP, with work on TCP in progress. The project scope also includes integration of TLDK libraries into
Vector Packet Processing (VPP) graph nodes to provide a host stack. This presentation was held during the DPDK US
Summit on August 10th, 2016.

Speakers

• Konstantin Ananyev

Slideshow

Presentation Powerpoint

Video

Video Presentation

6.2. Summits 153

https://wiki.fd.io/images/6/64/170201-fdio-csit-overview-00.pptx
https://wiki.fd.io/images/4/4d/170209-fdio-csit-update-02.pptx
https://wiki.fd.io/images/d/d3/Tldk%40160805u2.pptx
https://www.youtube.com/watch?v=GiEXLrJuAxg

Vector Packet Processor Documentation, Release 0.1

6.2.8 March 2016 - OpNFV Technical Workstream

Introduction to FD.io at OPNFV

Event

This presentation was held during the OpNFV Technical Workstream Meeting on March 30th, 2016.

Speakers

Ed Warnicke

Slideshow

Presentation Powerpoint

Video

Ed Warnicke’s Video Presentation

6.2.9 March 2016 - Open Network Summit

FD.io is the Future

Event

This presentation was held during the Open Network Summit on March 15th, 2016.

Speakers

Ed Warnicke

Slideshow

Presentation Powerpoint

Video

Ed Warnicke’s Video Presentation

Introduction to FD.io

Event

This presentation was held during the Open Network Summit on March 16th, 2016.

154 Chapter 6. Events

https://wiki.fd.io/images/1/18/Fdio_intro_-_2016-03-30.pptx
https://youtu.be/cijQq3Hco8s
https://wiki.fd.io/images/8/85/Fdio_is_the_future.pptx
https://www.youtube.com/watch?v=OYQWRnar0gs&list=PLGeM09tlguZQo9qAFIxF_TpNxlfGgJVUN&index=78

Vector Packet Processor Documentation, Release 0.1

Speakers

Ed Warnicke

Slideshow

Presentation Powerpoint

Video

Ed Warnicke’s Video Presentation

Packet Processed Storage in a Software Defined World

Event

This presentation was held during the Open Network Summit on March 17th, 2016.

Speakers

Ash Young

Slideshow

Presentation Powerpoint

Video

Ash Young’s Video Presentation

6.2.10 June 2016 - OPNFV Summit

Roadmap/Feedback Discussion

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

6.2. Summits 155

https://wiki.fd.io/images/7/78/Fdio_intro_-_ONS_-2016-03-16.pptx
https://www.youtube.com/watch?v=JyQTR7U1CX8&index=94&list=PLGeM09tlguZQo9qAFIxF_TpNxlfGgJVUN
https://wiki.fd.io/images/a/aa/Packet_Processed_Storage_in_a_Software_Defined_World.pptx
https://www.youtube.com/watch?v=pMU9ghBkSF8&index=148&list=PLGeM09tlguZQo9qAFIxF_TpNxlfGgJVUN

Vector Packet Processor Documentation, Release 0.1

Video

‘Video Presentation <>‘_

Session 1 - Introduction (DPDK, FD.io)

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Session 2 - NFV Virtual Switching

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Session 3 - SDN Controller/Orchestration

Event

This presentation was held during the on th, 201.

156 Chapter 6. Events

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Session 4 - Data Plane Acceleration

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Session 5 - Service Assurance

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.2. Summits 157

Vector Packet Processor Documentation, Release 0.1

6.2.11 February 2016 - OpenDaylight Design Forum

FD.io Intro

Event

This presentation was held during the OpenDaylight Design Forum on February 29th, 2016.

Speakers

Ed Warnicke

Slideshow

Presentation Powerpoint

Video

Ed Warnicke’s Video Presentation

FD.io and Honeycomb

Event

This presentation was held during the OpenDaylight Design Forum on March 1st, 2016.

Speakers

Ed Warnicke

Slideshow

Presentation Powerpoint

Video

Ed Warnicke’s Video Presentation

158 Chapter 6. Events

https://wiki.fd.io/images/a/a2/Fdio_intro_2016-03-10.pptx
https://www.youtube.com/watch?v=OYQWRnar0gs&list=PLGeM09tlguZQo9qAFIxF_TpNxlfGgJVUN&index=78
https://wiki.fd.io/images/8/84/Honeycomb_and_Fdio.pptx
https://www.youtube.com/watch?v=ZqH9nwh83DI

Vector Packet Processor Documentation, Release 0.1

6.3 Meetings

6.3.1 July 2017 - FD.io VPP Terabit

FD.io: A Universal Terabit Network Dataplane

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.3.2 June 2017 - Intel SDN/NFV Dev Lab

FD.io Overview

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Clear Containers + VPP Overview

Event

This presentation was held during the on th, 201.

6.3. Meetings 159

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.3.3 August 2016 - TWS Meeting

Intro to DPDK Cryptodev and VPP PoC

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.3.4 May 2016 - FD.io Webinar

FD.io is the Future of Software Dataplanes

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

160 Chapter 6. Events

Vector Packet Processor Documentation, Release 0.1

6.3.5 April 2016 - TSC Meeting

2016 May 31st Paris FD.io event proposal

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.4 Calls

6.4.1 2016 November - TLDK Call

TCP timer implementation overview

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.4.2 April 2017 - VPP Call

Building In Containers PoC

Event

This presentation was held during the on th, 201.

6.4. Calls 161

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.5 Fd.io Training Event

The FD.io Training provides new users with a detailed set of training courses on FD.io separated by days.

6.5.1 April 2016 - FD.io Training

Faster

Event

This presentation was held during the FD.io Training/Hackfest on April 5th, 2016.

Speakers

Dave Ward

Slideshow

Presentation Powerpoint

Video

Dave Ward’s Video Presentation

All Technical Content

As each session is delivered, the content will be provided here initially as PDF, with links to Videos, other content, to
come as available. These presentations were held during the FD.io Training/Hackfest on April 5th, 2016.

Day One

Day One

List of FD.io presentations that were held in the FD.io Training/Hackfest on April 5th, 2016.

162 Chapter 6. Events

https://wiki.fd.io/images/4/42/Fdio_Ward_-_2016-04-05.pptx
https://www.youtube.com/watch?v=_gpjwQHOGwE

Vector Packet Processor Documentation, Release 0.1

FD.io DevBoot: 1.2 VPP overview

Event

This presentation was held during the FD.io Training/Hackfest on April 5th, 2016.

Speakers

Dave Barach and Keith Burns

Slideshow

Presentation Powerpoint

Video

DevBoot Presentation

FD.io DevBoot: 1.3 Container Demo

Event

This presentation was held during the FD.io Training/Hackfest on April 5th, 2016.

Speakers

Nikos Bregiannis

Slideshow

Presentation Powerpoint

Video

DevBoot Presentation

FD.io DevBoot: 1.4 Code Contribution Mechanics

Event

This presentation was held during the FD.io Training/Hackfest on April 5th, 2016.

6.5. Fd.io Training Event 163

https://docs.google.com/presentation/d/1w5r7OrZtmspaYO6Vgo84g9L1-bOHmX_8hEZnaA99_ds/pub?start=false&loop=false&delayms=3000&slide=id.p1
https://www.youtube.com/watch?v=9Bk9pj71qWY
https://docs.google.com/presentation/d/1JL5O_ZkRUXVaY4ZuKaMj13jEGv90eanOYAB7mHfmPK4/pub?start=false&loop=false&delayms=3000&slide=id.p1
https://www.youtube.com/watch?v=z472oR-Z8zM

Vector Packet Processor Documentation, Release 0.1

Speakers

Keith Burns

Slideshow

Presentation Powerpoint

Video

DevBoot Presentation

FD.io DevBoot: 1.5 DPDK Introduction

Event

This presentation was held during the FD.io Training/Hackfest on April 5th, 2016.

Speakers

Cristian Dumitrescu

Slideshow

Presentation Powerpoint

Video

DevBoot Presentation

Day Two

Day Two

FD.io DevBoot: Day 2 Pre-work and scripts

Event

This presentation was held on April, 2016.

164 Chapter 6. Events

https://docs.google.com/presentation/d/1O4Cw8WQDnTIqkGFnLB6YLIO184oBkPzgWVaahElI8Qo/pub?start=false&loop=false&delayms=3000
https://www.youtube.com/watch?v=tAPMjAWR_h0
https://drive.google.com/open?id=0B_RDwdFu5VJDUGI2dmg1dWl0T3M
https://www.youtube.com/watch?v=ewsrzoKwwz0

Vector Packet Processor Documentation, Release 0.1

Preparing for Day 2

1. Set up your repo/ dev environment

2. Build vagrant environment

$ vagrant ssh
$ sudo su
$ wget -O /vagrant/netns.sh "https://tinyurl.com/devboot-netns"
$ wget -O /vagrant/macswap.conf "https://tinyurl.com/devboot-macswap-conf"
$ wget -O ~/.gdbinit "https://tinyurl.com/devboot-gdbinit"

For Init section: Breakpoints High-level chicken-scrawl of init

Day Three

Day Three

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

6.5. Fd.io Training Event 165

Vector Packet Processor Documentation, Release 0.1

Video

‘Video Presentation <>‘_

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Event

This presentation was held during the on th, 201.

166 Chapter 6. Events

Vector Packet Processor Documentation, Release 0.1

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

Day Four

Day Four

FD.io DevBoot: 4.1: Map in VPP

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

FD.io DevBoot: 4.3 CSIT + Performance testing

Event

This presentation was held during the on th, 201.

Speakers

Slideshow

‘Presentation Powerpoint <>‘_

Video

‘Video Presentation <>‘_

6.5. Fd.io Training Event 167

Vector Packet Processor Documentation, Release 0.1

168 Chapter 6. Events

CHAPTER 7

Reference

7.1 Command Line Reference

This is a reference guide for the vpp debug commands that are referenced in the within these documents. This is NOT
a complete list. For a complete list refer to the Debug CLI section of the Source Code Documents.

The debug CLI can be executed from a su shell using the vppctl command.

sudo bash
vppctl show interface

Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213

rx bytes 9928352943
tx packets 50384
tx bytes 3329279

TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384

rx bytes 3329279
tx packets 6569213
tx bytes 9928352943
drops 1498

local0 0 down

Commands can also be executed from the vppct shell.

vppctl
_______ _ _ _____ ___

__/ __/ _ \ (_)__ | | / / _ \/ _ \
_/ _// // / / / _ \ | |/ / ___/ ___/
/_/ /____(_)_/___/ |___/_/ /_/

vpp# show interface
Name Idx State Counter Count

TenGigabitEthernet86/0/0 1 up rx packets 6569213

(continues on next page)

169

https://docs.fd.io/vpp/18.07/clicmd.html

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

rx bytes 9928352943
tx packets 50384
tx bytes 3329279

TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384

rx bytes 3329279
tx packets 6569213
tx bytes 9928352943
drops 1498

local0 0 down

7.1.1 Interface Commands

Show Hardware-Interfaces

Display more detailed information about all or a list of given interfaces. The verboseness of the output can be con-
trolled by the following optional parameters:

• brief: Only show name, index and state (default for bonded interfaces).

• verbose: Also display additional attributes (default for all other interfaces).

• detail: Also display all remaining attributes and extended statistics.

To limit the output of the command to bonded interfaces and their slave interfaces, use the ‘*bond*’ optional
parameter.

Summary/Usage

show hardware-interfaces [brief|verbose|detail] [bond] [<interface> [<interface> [..
→˓]]] [<sw_idx> [<sw_idx> [..]]].

Examples

Example of how to display default data for all interfaces:

vpp# show hardware-interfaces
Name Idx Link Hardware

GigabitEthernet7/0/0 1 up GigabitEthernet7/0/0
Ethernet address ec:f4:bb:c0:bc:fc
Intel e1000
carrier up full duplex speed 1000 mtu 9216
rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
cpu socket 0

GigabitEthernet7/0/1 2 up GigabitEthernet7/0/1
Ethernet address ec:f4:bb:c0:bc:fd
Intel e1000
carrier up full duplex speed 1000 mtu 9216
rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
cpu socket 0

VirtualEthernet0/0/0 3 up VirtualEthernet0/0/0
Ethernet address 02:fe:a5:a9:8b:8e

(continues on next page)

170 Chapter 7. Reference

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

VirtualEthernet0/0/1 4 up VirtualEthernet0/0/1
Ethernet address 02:fe:c0:4e:3b:b0

VirtualEthernet0/0/2 5 up VirtualEthernet0/0/2
Ethernet address 02:fe:1f:73:92:81

VirtualEthernet0/0/3 6 up VirtualEthernet0/0/3
Ethernet address 02:fe:f2:25:c4:68

local0 0 down local0
local

Example of how to display ‘verbose’ data for an interface by name and software index (where 2 is the software index):

vpp# show hardware-interfaces GigabitEthernet7/0/0 2 verbose
Name Idx Link Hardware

GigabitEthernet7/0/0 1 up GigabitEthernet7/0/0
Ethernet address ec:f4:bb:c0:bc:fc
Intel e1000
carrier up full duplex speed 1000 mtu 9216
rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
cpu socket 0

GigabitEthernet7/0/1 2 down GigabitEthernet7/0/1
Ethernet address ec:f4:bb:c0:bc:fd
Intel e1000
carrier up full duplex speed 1000 mtu 9216
rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
cpu socket 0

Clear Hardware-Interfaces

Clear the extended statistics for all or a list of given interfaces (statistics associated with the ‘show hardware-interfaces’
command).

Summary/Usage

clear hardware-interfaces [<interface> [<interface> [..]]] [<sw_idx> [<sw_idx> [..]]].

Examples

Example of how to clear the extended statistics for all interfaces:

vpp# clear hardware-interfaces

Example of how to clear the extended statistics for an interface by name and software index (where 2 is the software
index):

vpp# clear hardware-interfaces GigabitEthernet7/0/0 2

Interface Commands

Show Interface

Shows software interface information including counters and features

7.1. Command Line Reference 171

Vector Packet Processor Documentation, Release 0.1

Summary/Usage

show interface [address|addr|features|feat] [<interface> [<interface> [..]]]

Examples

Example of how to show the interface counters:

vpp# show int
Name Idx State Counter Count

TenGigabitEthernet86/0/0 1 up rx packets 6569213
rx bytes 9928352943
tx packets 50384
tx bytes 3329279

TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384

rx bytes 3329279
tx packets 6569213
tx bytes 9928352943
drops 1498

local0 0 down

Example of how to display the interface placement:

vpp# show interface rx-placement
Thread 1 (vpp_wk_0):

node dpdk-input:
GigabitEthernet7/0/0 queue 0 (polling)

node vhost-user-input:
VirtualEthernet0/0/12 queue 0 (polling)
VirtualEthernet0/0/12 queue 2 (polling)
VirtualEthernet0/0/13 queue 0 (polling)
VirtualEthernet0/0/13 queue 2 (polling)

Thread 2 (vpp_wk_1):
node dpdk-input:
GigabitEthernet7/0/1 queue 0 (polling)

node vhost-user-input:
VirtualEthernet0/0/12 queue 1 (polling)
VirtualEthernet0/0/12 queue 3 (polling)
VirtualEthernet0/0/13 queue 1 (polling)
VirtualEthernet0/0/13 queue 3 (polling)

Clear Interfaces

Clear the statistics for all interfaces (statistics associated with the ‘show interface’ command).

Summary/Usage

clear interfaces

172 Chapter 7. Reference

Vector Packet Processor Documentation, Release 0.1

Example

Example of how to clear the statistics for all interfaces:

vpp# clear interfaces

Set Interface Mac Address

The ‘set interface mac address ‘ command allows to set MAC address of given interface. In case of NIC interfaces the
one has to support MAC address change. A side effect of MAC address change are changes of MAC addresses in FIB
tables (ipv4 and ipv6).

Summary/Usage

set interface mac address <interface> <mac-address>.

Examples

Examples of how to change MAC Address of interface:

vpp# set interface mac address GigabitEthernet0/8/0 aa:bb:cc:dd:ee:01
vpp# set interface mac address host-vpp0 aa:bb:cc:dd:ee:02
vpp# set interface mac address tap-0 aa:bb:cc:dd:ee:03
vpp# set interface mac address pg0 aa:bb:cc:dd:ee:04

Set Interface Mtu

Summary/Usage

set interface mtu [packet|ip4|ip6|mpls] <value> <interface>.

Set Interface Promiscuous

Summary/Usage

set interface promiscuous [on|off] <interface>.

Set Interface State

This command is used to change the admin state (up/down) of an interface.

If an interface is down, the optional ‘punt’ flag can also be set. The ‘punt’ flag implies the interface is disabled for
forwarding but punt all traffic to slow-path. Use the ‘enable’ flag to clear ‘punt’ flag (interface is still down).

7.1. Command Line Reference 173

Vector Packet Processor Documentation, Release 0.1

Summary/Usage

set interface state <interface> [up|down|punt|enable].

Examples

Example of how to configure the admin state of an interface to up:

vpp# set interface state GigabitEthernet2/0/0 up

Example of how to configure the admin state of an interface to down:

vpp# set interface state GigabitEthernet2/0/0 down

Create Sub-Interfaces

This command is used to add VLAN IDs to interfaces, also known as subinterfaces. The primary input to this command
is the ‘interface’ and ‘subId’ (subinterface Id) parameters. If no additional VLAN ID is provide, the VLAN ID is
assumed to be the ‘subId’. The VLAN ID and ‘subId’ can be different, but this is not recommended.

This command has several variations:

• create sub-interfaces <interface> <subId> - Create a subinterface to process packets with a given 802.1q
VLAN ID (same value as the ‘subId’).

• create sub-interfaces <interface> <subId> default - Adding the ‘default’ parameter indicates that packets
with VLAN IDs that do not match any other subinterfaces should be sent to this subinterface.

• create sub-interfaces <interface> <subId> untagged - Adding the ‘untagged’ parameter indicates that packets
no VLAN IDs should be sent to this subinterface.

• create sub-interfaces <interface> <subId>-<subId> - Create a range of subinterfaces to handle a range of
VLAN IDs.

• create sub-interfaces <interface> <subId> dot1q|dot1ad <vlanId>|any [exact-match] - Use this command
to specify the outer VLAN ID, to either be explicited or to make the VLAN ID different from the ‘subId’.

• create sub-interfaces <interface> <subId> dot1q|dot1ad <vlanId>|any inner-dot1q <vlanId>|any [exact-
match] - Use this command to specify the outer VLAN ID and the innner VLAN ID.

When ‘dot1q’ or ‘dot1ad’ is explictly entered, subinterfaces can be configured as either exact-match or non-exact
match. Non-exact match is the CLI default. If ‘exact-match’ is specified, packets must have the same number of
VLAN tags as the configuration. For non-exact-match, packets must at least that number of tags. L3 (routed) interfaces
must be configured as exact-match. L2 interfaces are typically configured as non-exact-match. If ‘dot1q’ or ‘dot1ad’
is NOT entered, then the default behavior is exact-match.

Use the ‘show interface’ command to display all subinterfaces.

Summary/Usage

create sub-interfaces <interface> {<subId> [default|untagged]} | {<subId>-<subId>} | {
→˓<subId> dot1q|dot1ad <vlanId>|any [inner-dot1q <vlanId>|any] [exact-match]}.

174 Chapter 7. Reference

Vector Packet Processor Documentation, Release 0.1

Examples

Example of how to create a VLAN subinterface 11 to process packets on 802.1q VLAN ID 11:

vpp# create sub-interfaces GigabitEthernet2/0/0 11

The previous example is shorthand and is equivalent to:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1q 11 exact-match

Example of how to create a subinterface number that is different from the VLAN ID:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1q 100

Examples of how to create q-in-q and q-in-any subinterfaces:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1q 100 inner-dot1q 200
vpp# create sub-interfaces GigabitEthernet2/0/0 12 dot1q 100 inner-dot1q any

Examples of how to create dot1ad interfaces:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1ad 11
vpp# create sub-interfaces GigabitEthernet2/0/0 12 dot1ad 100 inner-dot1q 200

Examples of ‘exact-match’ versus non-exact match. A packet with outer VLAN 100 and inner VLAN 200 would
match this interface, because the default is non-exact match:

vpp# create sub-interfaces GigabitEthernet2/0/0 5 dot1q 100

However, the same packet would NOT match this interface because ‘exact-match’ is specified and only one VLAN is
configured, but packet contains two VLANs:

vpp# create sub-interfaces GigabitEthernet2/0/0 5 dot1q 100 exact-match

Example of how to created a subinterface to process untagged packets:

vpp# create sub-interfaces GigabitEthernet2/0/0 5 untagged

Example of how to created a subinterface to process any packet with a VLAN ID that does not match any other
subinterface:

vpp# create sub-interfaces GigabitEthernet2/0/0 7 default

When subinterfaces are created, they are in the down state. Example of how to enable a newly created subinterface:

vpp# set interface GigabitEthernet2/0/0.7 up

7.1.2 Vhost User Commands

Create Vhost-User

Create a vHost User interface. Once created, a new virtual interface will exist with the name ‘VirtualEthernet0/0/x’,
where ‘x’ is the next free index.

There are several parameters associated with a vHost interface:

7.1. Command Line Reference 175

Vector Packet Processor Documentation, Release 0.1

• socket <socket-filename> - Name of the linux socket used by hypervisor and VPP to manage the vHost inter-
face. If in ‘server’ mode, VPP will create the socket if it does not already exist. If in ‘client’ mode, hypervisor
will create the socket if it does not already exist. The VPP code is indifferent to the file location. However, if
SELinux is enabled, then the socket needs to be created in ‘/var/run/vpp/ ’.

• server - Optional flag to indicate that VPP should be the server for the linux socket. If not provided, VPP will
be the client. In ‘server’ mode, the VM can be reset without tearing down the vHost Interface. In ‘client’ mode,
VPP can be reset without bringing down the VM and tearing down the vHost Interface.

• feature-mask <hex> - Optional virtio/vhost feature set negotiated at startup. This is intended for degugging
only. It is recommended that this parameter not be used except by experienced users. By default, all supported
features will be advertised. Otherwise, provide the set of features desired.

– 0x000008000 (15) - VIRTIO_NET_F_MRG_RXBUF

– 0x000020000 (17) - VIRTIO_NET_F_CTRL_VQ

– 0x000200000 (21) - VIRTIO_NET_F_GUEST_ANNOUNCE

– 0x000400000 (22) - VIRTIO_NET_F_MQ

– 0x004000000 (26) - VHOST_F_LOG_ALL

– 0x008000000 (27) - VIRTIO_F_ANY_LAYOUT

– 0x010000000 (28) - VIRTIO_F_INDIRECT_DESC

– 0x040000000 (30) - VHOST_USER_F_PROTOCOL_FEATURES

– 0x100000000 (32) - VIRTIO_F_VERSION_1

• hwaddr <mac-addr> - Optional ethernet address, can be in either X:X:X:X:X:X unix or X.X.X cisco format.

• renumber <dev_instance> - Optional parameter which allows the instance in the name to be specified. If
instance already exists, name will be used anyway and multiple instances will have the same name. Use with
caution.

Summary/Usage

create vhost-user socket <socket-filename> [server] [feature-mask <hex>] [hwaddr <mac-
→˓addr>] [renumber <dev_instance>]

Examples

Example of how to create a vhost interface with VPP as the client and all features enabled:

vpp# create vhost-user socket /var/run/vpp/vhost1.sock
VirtualEthernet0/0/0

Example of how to create a vhost interface with VPP as the server and with just multiple queues enabled:

vpp# create vhost-user socket /var/run/vpp/vhost2.sock server feature-mask 0x40400000
VirtualEthernet0/0/1

Once the vHost interface is created, enable the interface using:

vpp# set interface state VirtualEthernet0/0/0 up

176 Chapter 7. Reference

Vector Packet Processor Documentation, Release 0.1

Show Vhost-User

Display the attributes of a single vHost User interface (provide interface name), multiple vHost User interfaces (pro-
vide a list of interface names seperated by spaces) or all Vhost User interfaces (omit an interface name to display all
vHost interfaces).

Summary/Usage

show vhost-user [<interface> [<interface> [..]]] [descriptors].

Examples

Example of how to display a vhost interface:

vpp# show vhost-user VirtualEthernet0/0/0
Virtio vhost-user interfaces
Global:

coalesce frames 32 time 1e-3
Interface: VirtualEthernet0/0/0 (ifindex 1)
virtio_net_hdr_sz 12
features mask (0xffffffffffffffff):
features (0x50408000):
VIRTIO_NET_F_MRG_RXBUF (15)
VIRTIO_NET_F_MQ (22)
VIRTIO_F_INDIRECT_DESC (28)
VHOST_USER_F_PROTOCOL_FEATURES (30)
protocol features (0x3)
VHOST_USER_PROTOCOL_F_MQ (0)
VHOST_USER_PROTOCOL_F_LOG_SHMFD (1)

socket filename /var/run/vpp/vhost1.sock type client errno "Success"

rx placement:
thread 1 on vring 1
thread 1 on vring 5
thread 2 on vring 3
thread 2 on vring 7

tx placement: spin-lock
thread 0 on vring 0
thread 1 on vring 2
thread 2 on vring 0

Memory regions (total 2)
region fd guest_phys_addr memory_size userspace_addr mmap_offset
→˓ mmap_addr
====== ===== ================== ================== ==================
→˓================== ==================
0 60 0x0000000000000000 0x00000000000a0000 0x00002aaaaac00000

→˓0x0000000000000000 0x00002aab2b400000
1 61 0x00000000000c0000 0x000000003ff40000 0x00002aaaaacc0000

→˓0x00000000000c0000 0x00002aababcc0000

Virtqueue 0 (TX)
qsz 256 last_avail_idx 0 last_used_idx 0

(continues on next page)

7.1. Command Line Reference 177

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

avail.flags 1 avail.idx 128 used.flags 1 used.idx 0
kickfd 62 callfd 64 errfd -1

Virtqueue 1 (RX)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
kickfd 65 callfd 66 errfd -1

Virtqueue 2 (TX)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 128 used.flags 1 used.idx 0
kickfd 63 callfd 70 errfd -1

Virtqueue 3 (RX)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
kickfd 72 callfd 74 errfd -1

Virtqueue 4 (TX disabled)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
kickfd 76 callfd 78 errfd -1

Virtqueue 5 (RX disabled)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
kickfd 80 callfd 82 errfd -1

Virtqueue 6 (TX disabled)
qsz 256 last_avail_idx 0 last_used_idx 0

avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
kickfd 84 callfd 86 errfd -1

Virtqueue 7 (RX disabled)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
kickfd 88 callfd 90 errfd -1

The optional ‘descriptors’ parameter will display the same output as the previous example but will include the de-
scriptor table for each queue. The output is truncated below:

vpp# show vhost-user VirtualEthernet0/0/0 descriptors

Virtio vhost-user interfaces
Global:

coalesce frames 32 time 1e-3
Interface: VirtualEthernet0/0/0 (ifindex 1)
virtio_net_hdr_sz 12
features mask (0xffffffffffffffff):
features (0x50408000):
VIRTIO_NET_F_MRG_RXBUF (15)
VIRTIO_NET_F_MQ (22)

:
Virtqueue 0 (TX)
qsz 256 last_avail_idx 0 last_used_idx 0
avail.flags 1 avail.idx 128 used.flags 1 used.idx 0

(continues on next page)

178 Chapter 7. Reference

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

kickfd 62 callfd 64 errfd -1

descriptor table:
id addr len flags next user_addr
===== ================== ===== ====== ===== ==================
0 0x0000000010b6e974 2060 0x0002 1 0x00002aabbc76e974
1 0x0000000010b6e034 2060 0x0002 2 0x00002aabbc76e034
2 0x0000000010b6d6f4 2060 0x0002 3 0x00002aabbc76d6f4
3 0x0000000010b6cdb4 2060 0x0002 4 0x00002aabbc76cdb4
4 0x0000000010b6c474 2060 0x0002 5 0x00002aabbc76c474
5 0x0000000010b6bb34 2060 0x0002 6 0x00002aabbc76bb34
6 0x0000000010b6b1f4 2060 0x0002 7 0x00002aabbc76b1f4
7 0x0000000010b6a8b4 2060 0x0002 8 0x00002aabbc76a8b4
8 0x0000000010b69f74 2060 0x0002 9 0x00002aabbc769f74
9 0x0000000010b69634 2060 0x0002 10 0x00002aabbc769634
10 0x0000000010b68cf4 2060 0x0002 11 0x00002aabbc768cf4

:
249 0x0000000000000000 0 0x0000 250 0x00002aab2b400000
250 0x0000000000000000 0 0x0000 251 0x00002aab2b400000
251 0x0000000000000000 0 0x0000 252 0x00002aab2b400000
252 0x0000000000000000 0 0x0000 253 0x00002aab2b400000
253 0x0000000000000000 0 0x0000 254 0x00002aab2b400000
254 0x0000000000000000 0 0x0000 255 0x00002aab2b400000
255 0x0000000000000000 0 0x0000 32768 0x00002aab2b400000

Virtqueue 1 (RX)
qsz 256 last_avail_idx 0 last_used_idx 0

Debug Vhost-User

Turn on/off debug for vhost

Summary/Usage

debug vhost-user <on | off>.

Delete Vhost-User

Delete a vHost User interface using the interface name or the software interface index. Use the ‘show interface’
command to determine the software interface index. On deletion, the linux socket will not be deleted.

Summary/Usage

delete vhost-user {<interface> | sw_if_index <sw_idx>}.

Examples

Example of how to delete a vhost interface by name:

7.1. Command Line Reference 179

Vector Packet Processor Documentation, Release 0.1

vpp# delete vhost-user VirtualEthernet0/0/1

Example of how to delete a vhost interface by software interface index:

vpp# delete vhost-user sw_if_index 1

7.2 VM’s with Vagrant

This reference guide will cover using Vagrant to boot a VM (virtual machine).

7.2.1 Overview

This guide shows how the VPP Vagrant File interacts with shell scripts to configure a Vagrant box that boots a VM
with VPP.

Prerequisites

You have the FD.io VPP repo cloned locally on your machine.

This guide will refer to the following files from that repo: Vagrantfile, build.sh, env.sh, and update.sh.

7.2.2 Installing Vbox and Vagrant

Installing VirtualBox

First download VirtualBox, which is virtualization software for creating VM’s.

If you’re on CentOS, follow the steps here.

If you’re on Ubuntu, perform:

$ sudo apt-get install virtualbox

Installing Vagrant

Here we are on a 64-bit version of CentOS, downloading and installing Vagrant 2.1.2:

$ yum -y install https://releases.hashicorp.com/vagrant/2.1.2/vagrant_2.1.2_x86_64.rpm

This is a similar command, but on a 64-bit version of Debian:

$ sudo apt-get install https://releases.hashicorp.com/vagrant/2.1.2/vagrant_2.1.2_x86_
→˓64.deb

If you want to download a newer version of Vagrant or one specific to your OS and architecture, go to the Vagrant
download page, right-click and copy the link address for your specified version, and replace the above install command
for your respective OS and architechure.

180 Chapter 7. Reference

https://www.vagrantup.com/docs/boxes.html
https://github.com/FDio/vpp
https://wiki.centos.org/HowTos/Virtualization/VirtualBox
https://www.vagrantup.com/downloads.html

Vector Packet Processor Documentation, Release 0.1

7.2.3 Setting your ENV Variables

The Vagrant File used in the VPP repo sets the configuration options based on your ENV (environment) variables, or
to default the configuration at specified values if your ENV variables are not initialized (if you did not run the env.sh
script found below).

This is the env.sh script found in vpp/extras/vagrant. When run, the script sets ENV variables using the export
command.

export VPP_VAGRANT_DISTRO="ubuntu1604"
export VPP_VAGRANT_NICS=2
export VPP_VAGRANT_VMCPU=4
export VPP_VAGRANT_VMRAM=4096

In the Vagrant File, you can see these same ENV variables used (discussed on the next page).

Adding your own ENV variables is easy. For example, if you wanted to setup proxies for your VM, you would add
to this file the export commands found in the building VPP commands section. Note that this only works if the ENV
variable is defined in the Vagrant File.

Once you’re finished with env.sh script, and you are in the directory containing env.sh, run the script to set the ENV
variables with:

$ source ./env.sh

7.2.4 Vagrantfiles

A Vagrantfile contains the box and provision configuration settings for your VM. The syntax of Vagrantfiles is Ruby
(Ruby experience is not necessary).

The command vagrant up creates a Vagrant Box based on your Vagrantfile. A Vagrant box is one of the motivations for
using Vagrant - its a “development-ready box” that can be copied to other machines to recreate the same environment.

It’s common for people to think that a Vagrant box is the VM. But rather, the VM is inside a Vagrant box, with the box
containing additional configuration options you can set, such as VM options, scripts to run on boot, etc.

This Vagrant website for boxes shows you how to configure a basic Vagrantfile for your specific OS and VM software.

Box configuration

Looking at the Vagrant File, we can see that the default OS is Ubuntu 16.04 (since the variable distro equals
ubuntu1604 if there is no VPP_VAGRANT_DISTRO variable set - thus the else case is executed.)

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

Pick the right distro and bootstrap, default is ubuntu1604
distro = (ENV['VPP_VAGRANT_DISTRO'] || "ubuntu1604")
if distro == 'centos7'
config.vm.box = "centos/7"
config.vm.box_version = "1708.01"
config.ssh.insert_key = false

elsif distro == 'opensuse'
config.vm.box = "opensuse/openSUSE-42.3-x86_64"

(continues on next page)

7.2. VM’s with Vagrant 181

https://www.vagrantup.com/docs/vagrantfile/
https://app.vagrantup.com/boxes/search

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

config.vm.box_version = "1.0.4.20170726"
else
config.vm.box = "puppetlabs/ubuntu-16.04-64-nocm"

As mentioned in the previous page, you can specify which OS and VM provider you want for your Vagrant box from
the Vagrant boxes page, and setting your ENV variable appropriately in env.sh.

Next in the Vagrantfile, you see some config.vm.provision commands. As paraphrased from Basic usage of Provision-
ers, by default these are only run once - during the first boot of the box.

config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),"update.sh")
config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),"build.sh"),
→˓:args => "/vpp vagrant"

The two lines above set the VM to run two scripts during its first bootup: an update script update.sh that does basic
updating and installation of some useful tools, as well as build.sh that builds (but does not install) VPP in the VM.
You can view these scripts on your own for more detail on the commands used.

Looking further in the Vagrant File, you can see more Ruby variables being set to ENV’s or to a default value:

Define some physical ports for your VMs to be used by DPDK
nics = (ENV['VPP_VAGRANT_NICS'] || "2").to_i(10)
for i in 1..nics
config.vm.network "private_network", type: "dhcp"

end

use http proxy if avaiable
if ENV['http_proxy'] && Vagrant.has_plugin?("vagrant-proxyconf")
config.proxy.http = ENV['http_proxy']
config.proxy.https = ENV['https_proxy']
config.proxy.no_proxy = "localhost,127.0.0.1"

end

vmcpu=(ENV['VPP_VAGRANT_VMCPU'] || 2)
vmram=(ENV['VPP_VAGRANT_VMRAM'] || 4096)

You can see how the box or VM is configured, such as the amount of NICs (defaults to 3 NICs: 1 x NAT - host access
and 2 x VPP DPDK enabled), CPUs (defaults to 2), and RAM (defaults to 4096 MB).

Box bootup

Once you’re satisfied with your Vagrantfile, boot the box with:

$ vagrant up

Doing this above command will take quite some time, since you are installing a VM and building VPP. Take a break
and get some scooby snacks while you wait.

To confirm it is up, show the status and information of Vagrant boxes with:

$ vagrant global-status
id name provider state directory
--
→˓---
d90a17b default virtualbox poweroff /home/centos/andrew-vpp/vppsb/vpp-userdemo
77b085e default virtualbox poweroff /home/centos/andrew-vpp/vppsb2/vpp-userdemo

(continues on next page)

182 Chapter 7. Reference

https://app.vagrantup.com/boxes/search
https://www.vagrantup.com/docs/provisioning/basic_usage.html
https://www.vagrantup.com/docs/provisioning/basic_usage.html

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

c1c8952 default virtualbox poweroff /home/centos/andrew-vpp/testingVPPSB/extras/
→˓vagrant
c199140 default virtualbox running /home/centos/andrew-vpp/vppsb3/vpp-userdemo

You will have only one machine running, but I have multiple as shown above.

Note: To poweroff your VM, type:

$ vagrant halt <id>

To resume your VM, type:

$ vagrant resume <id>

To destroy your VM, type:

$ vagrant destroy <id>

Note that “destroying” a VM does not erase the box, but rather destroys all resources allocated for that VM. For other
Vagrant commands, such as destroying a box, refer to the Vagrant CLI Page.

7.2.5 Accessing your VM

ssh into the newly created box:

$ vagrant ssh <id>

Sample output looks like:

$ vagrant ssh c1c
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-21-generic x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Mon Jun 25 08:05:38 2018 from 10.0.2.2
vagrant@localhost:~$

Note: Type exit in the command-line if you want to exit the VM.

Become the root with:

$ sudo bash

Now install VPP in the VM. Keep in mind that VPP is already built (but not yet installed) at this point based on the
commands from the provisioned script build.sh.

When you ssh into your Vagrant box you will be placed in the directory /home/vagrant. Change directories to
/vpp/build-root, and run these commands to install VPP based on your OS and architechture:

For Ubuntu systems:

~# dpkg -i *.deb

7.2. VM’s with Vagrant 183

https://www.vagrantup.com/docs/cli/

Vector Packet Processor Documentation, Release 0.1

For CentOS systems:

~# rpm -Uvh *.rpm

Since VPP is now installed, you can start running VPP with:

~# service vpp start

7.2.6 Vagrant File

This is the Vagrantfile provided in the Git VPP repo.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

Pick the right distro and bootstrap, default is ubuntu1604
distro = (ENV['VPP_VAGRANT_DISTRO'] || "ubuntu1604")
if distro == 'centos7'
config.vm.box = "centos/7"
config.vm.box_version = "1708.01"
config.ssh.insert_key = false

elsif distro == 'opensuse'
config.vm.box = "opensuse/openSUSE-42.3-x86_64"
config.vm.box_version = "1.0.4.20170726"

else
config.vm.box = "puppetlabs/ubuntu-16.04-64-nocm"

end
config.vm.box_check_update = false

config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),"update.sh")
config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),"build.sh"),

→˓:args => "/vpp vagrant"

post_build = (ENV['VPP_VAGRANT_POST_BUILD'])
if post_build == "test"
config.vm.provision "shell", inline: "echo Testing VPP; cd /vpp; make test"

elsif post_build == "install"
config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),"install.sh

→˓"), :args => "/vpp"
config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),

→˓"clearinterfaces.sh")
config.vm.provision :shell, :path => File.join(File.dirname(__FILE__),"run.sh")

end

Add .gnupg dir in so folks can sign patches
Note, as gnupg puts socket files in that dir, we have
to be cautious and make sure we are dealing with a plain file
homedir = File.expand_path("~/")
Dir["#{homedir}/.gnupg/**/*"].each do |fname|
if File.file?(fname)

destname = fname.sub(Regexp.escape("#{homedir}/"),'')
config.vm.provision "file", source: fname, destination: destname

end
end

(continues on next page)

184 Chapter 7. Reference

https://github.com/FDio/vpp/blob/master/extras/vagrant/Vagrantfile

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

Copy in the .gitconfig if it exists
if File.file?(File.expand_path("~/.gitconfig"))
config.vm.provision "file", source: "~/.gitconfig", destination: ".gitconfig"

end

vagrant-cachier caches apt/yum etc to speed subsequent
vagrant up
to enable, run
vagrant plugin install vagrant-cachier
#
if Vagrant.has_plugin?("vagrant-cachier")
config.cache.scope = :box

end

Define some physical ports for your VMs to be used by DPDK
nics = (ENV['VPP_VAGRANT_NICS'] || "2").to_i(10)
for i in 1..nics
config.vm.network "private_network", type: "dhcp"

end

use http proxy if avaiable
if ENV['http_proxy'] && Vagrant.has_plugin?("vagrant-proxyconf")
config.proxy.http = ENV['http_proxy']
config.proxy.https = ENV['https_proxy']
config.proxy.no_proxy = "localhost,127.0.0.1"
end

vmcpu=(ENV['VPP_VAGRANT_VMCPU'] || 2)
vmram=(ENV['VPP_VAGRANT_VMRAM'] || 4096)

config.ssh.forward_agent = true
config.ssh.forward_x11 = true

config.vm.provider "virtualbox" do |vb|
vb.customize ["modifyvm", :id, "--ioapic", "on"]
vb.memory = "#{vmram}"
vb.cpus = "#{vmcpu}"

rsync the vpp directory if provision hasn't happened yet
unless File.exist? (".vagrant/machines/default/virtualbox/action_provision")

config.vm.synced_folder "../../", "/vpp", type: "rsync",
rsync__auto: false,
rsync__exclude: [
"build-root/build*/",
"build-root/install*/",
"build-root/images*/",
"build-root/*.deb",
"build-root/*.rpm",
"build-root/*.changes",
"build-root/python",
"build-root/deb/debian/*.dkms",
"build-root/deb/debian/*.install",
"build-root/deb/debian/changes",
"build-root/tools"]

end

(continues on next page)

7.2. VM’s with Vagrant 185

Vector Packet Processor Documentation, Release 0.1

(continued from previous page)

#support for the SSE4.x instruction is required in some versions of VB.
vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.1", "1"]
vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.2", "1"]

end
config.vm.provider "vmware_fusion" do |fusion,override|
fusion.vmx["memsize"] = "#{vmram}"
fusion.vmx["numvcpus"] = "#{vmcpu}"

end
config.vm.provider "libvirt" do |lv|
lv.memory = "#{vmram}"
lv.cpus = "#{vmcpu}"

end
config.vm.provider "vmware_workstation" do |vws,override|
vws.vmx["memsize"] = "#{vmram}"
vws.vmx["numvcpus"] = "#{vmcpu}"

end
end

186 Chapter 7. Reference

	Overview
	What is VPP?
	Features
	Performance
	Architectures and Operating Systems

	Getting Started Guides
	Users
	Developers

	Use Cases
	FD.io VPP with Containers
	FD.io VPP with Virtual Machines
	Using VPP as a Home Gateway
	vSwitch/vRouter

	Troubleshooting
	CPU Load/Usage

	User Guides
	Progressive VPP Tutorial
	API User Guides

	Events
	Conferences
	Summits
	Meetings
	Calls
	Fd.io Training Event

	Reference
	Command Line Reference
	VM’s with Vagrant

