

What is FDIO?

FD.io (Fast data - Input/Output) is a collection of several projects and
libraries to amplify the transformation to support flexible, programmable
and composable services on a generic hardware platform. FD.io offers the
Software Defined Infrastructure developer community a landing site with
multiple projects fostering innovations in software-based packet processing
towards the creation of high-throughput, low-latency and resource-efficient
IO services suitable to many architectures (x86, ARM, and PowerPC) and
deployment environments (bare metal, VM, container).

A key component is the Vector Packet Processing (VPP) library donated by Cisco.

	Concepts
	What is VPP?
	Introduction

	Why is it called vector processing?

	Modular, Flexible, and Extensible

	Feature Rich
	List of Features
	IPv4/IPv6

	IPv4

	IPv6

	MPLS

	L2

	Example Use Case: VPP as a vSwitch/vRouter

	Local Programmability

	Remote Programmability

	Sample Data Plane Management Agent

	Primary Characteristics Of VPP
	Improved fault-tolerance and ISSU

	Runs as a Linux user-space process:

	Integrated with the DPDK, VPP supports existing NIC devices including:

	Security issues considered:

	Supported Architectures

	Supported Packaging Models

	Performance Expectations

	Performance Metrics

	NDR Rates
	NDR rates for 2p10GE, 1 core, L2 NIC-to_NIC

	NDR rates for 2p10GE, 1 core, L2 NIC-to-VM/VM-to-VM

	NDR rates VPP versus OVSDPDK

	Setup
	VPP Configuration Utility
	Summary / Purpose of VPP Configuration Utility

	Use
	Ubuntu: Install and Run

	For Developers
	Steps to Run the Utility

	Uploading to PyPi

	Configuration Tool Main Menu

	Command 1. Show System Information
	Before Configuration

	After Configuration

	Command 2. Dry Run

	Command 3. Apply Full Configuration

	Command 4. List/Install/Uninstall VPP

	Command 5. Execute Basic tests
	Command 1. Set IPv4 Addresses

	Tasks
	Writing and pushing VPP Documentation
	Getting and Building the VPP Documentation
	Overview

	Build and View Instructions

	Pushing a patch to the VPP Documentation
	Pushing a Patch

	Reviewing a Patch

	Getting the Latest Sources

	Installing VPP Binaries from Packages
	Package Descriptions
	vpp

	vpp-lib

	vpp-plugins

	vpp-dbg

	vpp-dev

	vpp-api-java

	vpp-api-python

	vpp-api-lua

	Installing on Ubuntu
	The fd.io repo

	Install the mandatory packages

	Install the optional packages

	Uninstall the packages

	Installing on Centos
	The fd.io repo
	CentOS 7.3 - VPP Release RPMs (Latest)

	CentOS 7.3 - VPP stable/1804 branch RPMs

	CentOS 7.3 - VPP master branch RPMs (in development)

	Install VPP RPMs

	Install the optional RPMs

	Uninstall the VPP RPMs

	Installing on openSUSE
	Blog post

	Installing
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Uninstall
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Downloading the jvpp jar
	Getting jvpp jar

	Getting jvpp via maven

	Guides
	Progressive VPP Tutorial
	Introduction

	Exercise: Setting up your environment

	Vagrant Set Up
	Action: Install Virtualbox

	Action: Install Vagrant

	Action: Create a Vagrant Directory

	Create a Vagrantfile

	Action: Vagrant Up

	Action: ssh to Vagrant VM

	Exercise: Install VPP

	Exercise: VPP basics

	VPP command learned in this exercise

	Action: Remove dpdk plugin

	Action: Run VPP

	Action: Send commands to VPP using vppctl

	Action: Start a VPP shell using vppctl

	Exercise: Create an interface
	Skills to be Learned

	VPP command learned in this exercise
	Topology

	Initial State

	Action: Create veth interfaces on host

	Action: Create vpp host- interface

	Action: Add trace

	Action: Ping from host to vpp

	Action: Examine Trace of ping from host to vpp

	Action: Clear trace buffer

	Action: ping from vpp to host

	Action: Examine Trace of ping from vpp to host

	Action: Examine arp tables

	Action: Examine routing table

	Exercise: Connecting two vpp instances
	Background

	Skills to be Learned

	Topology

	Initial state

	Action: Running a second vpp instances

	Action: Create memif interface on vpp1

	Action: Create memif interface on vpp2

	Action: Ping from vpp1 to vpp2

	Exercise: Routing
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial State

	Action: Setup host route

	Setup return route on vpp2

	Ping from host through vpp1 to vpp2

	Exercise: Switching
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Run vpp instances

	Action: Connect vpp1 to host

	Action: Connect vpp1 to vpp2

	Action: Configure Bridge Domain on vpp1

	Action: Configure loopback interface on vpp2

	Action: Configure bridge domain on vpp2

	Action: Ping from host to vpp and vpp to host

	Action: Examine l2 fib

	Source NAT
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Install vpp-plugins

	Action: Create vpp instance

	Action: Create veth interfaces

	Action: Configure vpp outside interface

	Action: Configure snat

	Action: Prepare to Observe Snat

	Action: Ping via snat

	Action: Confirm snat

	Reference

Concepts

	What is VPP?
	Introduction

	Why is it called vector processing?

	Modular, Flexible, and Extensible

	Feature Rich
	List of Features
	IPv4/IPv6

	IPv4

	IPv6

	MPLS

	L2

	Example Use Case: VPP as a vSwitch/vRouter

	Local Programmability

	Remote Programmability

	Sample Data Plane Management Agent

	Primary Characteristics Of VPP
	Improved fault-tolerance and ISSU

	Runs as a Linux user-space process:

	Integrated with the DPDK, VPP supports existing NIC devices including:

	Security issues considered:

	Supported Architectures

	Supported Packaging Models

	Performance Expectations

	Performance Metrics

	NDR Rates
	NDR rates for 2p10GE, 1 core, L2 NIC-to_NIC

	NDR rates for 2p10GE, 1 core, L2 NIC-to-VM/VM-to-VM

	NDR rates VPP versus OVSDPDK

What is VPP?

	Introduction

	Why is it called vector processing?

	Modular, Flexible, and Extensible

	Feature Rich
	List of Features
	IPv4/IPv6

	IPv4

	IPv6

	MPLS

	L2

	Example Use Case: VPP as a vSwitch/vRouter

	Local Programmability

	Remote Programmability

	Sample Data Plane Management Agent

	Primary Characteristics Of VPP
	Improved fault-tolerance and ISSU

	Runs as a Linux user-space process:

	Integrated with the DPDK, VPP supports existing NIC devices including:

	Security issues considered:

	Supported Architectures

	Supported Packaging Models

	Performance Expectations

	Performance Metrics

	NDR Rates
	NDR rates for 2p10GE, 1 core, L2 NIC-to_NIC

	NDR rates for 2p10GE, 1 core, L2 NIC-to-VM/VM-to-VM

	NDR rates VPP versus OVSDPDK

Introduction

The VPP platform is an extensible framework that provides out-of-the-box
production quality switch/router functionality. It is the open source
version of Cisco’s Vector Packet Processing (VPP) technology: a high
performance, packet-processing stack that can run on commodity CPUs.

The benefits of this implementation of VPP are its high performance,
proven technology, its modularity and flexibility, and rich feature set.

The VPP technology is based on proven technology that has helped ship
over $1 Billion of Cisco products. It is a modular design. The framework
allows anyone to “plug in” new graph nodes without the need to change
core/kernel code.

[image:]
Packet Processing Layer in High Level Overview of Networking Stack

Why is it called vector processing?

As the name implies, VPP uses vector processing as opposed to scalar
processing. Scalar packet processing refers to the processing of one
packet at a time. That older, traditional approach entails processing an
interrupt, and traversing the call stack (a calls b calls c… return
return return from the nested calls… then return from Interrupt). That
process then does one of 3 things: punt, drop, or rewrite/forward the
packet.

The problem with that traditional scalar packet processing is:

	thrashing occurs in the I-cache

	each packet incurs an identical set of I-cache misses

	no workaround to the above except to provide larger caches

By contrast, vector processing processes more than one packet at a time.

One of the benefits of the vector approach is that it fixes the I-cache
thrashing problem. It also mitigates the dependent read latency problem
(pre-fetching eliminates the latency).

This approach fixes the issues related to stack depth / D-cache misses
on stack addresses. It improves “circuit time”. The “circuit” is the
cycle of grabbing all available packets from the device RX ring, forming
a “frame” (vector) that consists of packet indices in RX order, running
the packets through a directed graph of nodes, and returning to the RX
ring. As processing of packets continues, the circuit time reaches a
stable equilibrium based on the offered load.

As the vector size increases, processing cost per packet decreases
because you are amortizing the I-cache misses over a larger N.

Modular, Flexible, and Extensible

The VPP platform is built on a ‘packet processing graph’. This modular
approach means that anyone can ‘plugin’ new graph nodes. This makes
extensibility rather simple, and it means that plugins can be customized
for specific purposes.

[image: Custom Packet Processing Graph]
Custom Packet Processing Graph

How does the plugin come into play? At runtime, the VPP platform grabs
all available packets from RX rings to form a vector of packets. A
packet processing graph is applied, node by node (including plugins) to
the entire packet vector. Graph nodes are small and modular. Graph nodes
are loosely coupled. This makes it easy to introduce new graph nodes. It
also makes it relatively easy to rewire existing graph nodes.

A plugin can introduce new graph nodes or rearrange the packet
processing graph. You can also build a plugin independently of the VPP
source tree - which means you can treat it as an independent component.
A plugin can be installed by adding it to a plugin directory.

The VPP platform can be used to build any kind of packet processing
application. It can be used as the basis for a Load Balancer, a
Firewall, an IDS, or a Host Stack. You could also create a combination
of applications. For example, you could add load balancing to a vSwitch.

The engine runs in pure userspace. This means that plugins do not
require changing core code - you can extend the capabilities of the
packet processing engine without the need to change code running at the
kernel level. Through the creation of a plugin, anyone can extend
functionality with:

	New custom graph nodes

	Rearrangement of graph nodes

	New low level APIs

Feature Rich

The full suite of graph nodes allows a wide variety of network appliance
workloads to be built. At a high level, the platform provides:

	Fast lookup tables for routes, bridge entries

	Arbitrary n-tuple classifiers

	Out of the box production quality switch/router functionality

The following is a summary of the features the VPP platform provides:

	List of Features
	IPv4/IPv6

	IPv4

	IPv6

	MPLS

	L2

Example Use Case: VPP as a vSwitch/vRouter

One of the use cases for the VPP platform is to implement it as a
virtual switch or router. The following section describes examples of
possible implementations that can be created with the VPP platform. For
more in depth descriptions about other possible use cases, see the list
of

Note

jadfix todo Link to the Use Cases

[image: Figure: Linux host as a vSwitch]
Figure: Linux host as a vSwitch

You can use the VPP platform to create out-of-the-box virtual switches
(vSwitch) and virtual routers (vRouter). The VPP platform allows you to
manage certain functions and configurations of these application through
a command-line interface (CLI).

Some of the functionality that a switching application can create
includes:

	Bridge Domains

	Ports (including tunnel ports)

	Connect ports to bridge domains

	Program ARP termination

Some of the functionality that a routing application can create
includes:

	Virtual Routing and Forwarding (VRF) tables (in the thousands)

	Routes (in the millions)

Local Programmability

[image: VPP Communication Through Low Level API]
VPP Communication Through Low Level API

One approach is to implement a VPP application to communicate with an
external application within a local environment (Linux host or
container). The communication would occur through a low level API. This
approach offers a complete, feature rich solution that is simple yet
high performance. For example, it is reasonable to expect performance
yields of 500k routes/second.

This approach takes advantage of using a shared memory/message queue.
The implementation is on a local on a box or container. All CLI tasks
can be done through API calls.

The current implementation of the VPP platform generates Low Level
Bindings for C clients and for Java clients. It’s possible for future
support to be provided for bindings for other programming languages.

Remote Programmability

Another approach is to use a Data Plane Management Agent through a High
Level API. As shown in the figure, a Data Plane Management Agent can
speak through a low level API to the VPP App (engine). This can run
locally in a box (or VM or container). The box (or container) would
expose higher level APIs through some form of binding.

[image: Figure: API Through Data Plane Management Agent]
Figure: API Through Data Plane Management Agent

This is a particularly flexible approach because the VPP platform does
not force a particular Data Plane Management Agent. Furthermore, the VPP
platform does not restrict communication to only *one* high level API.
Anybody can bring a Data Plane Management Agent. This allows you to
match the high level API/Data Plane Management Agent and implementation
to the specific needs of the VPP app.

Sample Data Plane Management Agent

One example of using a high hevel API is to implement the VPP platform
as an app on a box that is running a local ODL instance (Honeycomb). You
could use a low level API over generated Java Bindings to talk to the
VPP App, and expose Yang Models over netconf/restconf NB.

[image: VPP Using ODL Honeycomb as a Data Plane Management Agent]
VPP Using ODL Honeycomb as a Data Plane Management Agent

This would be one way to implement Bridge Domains.

Primary Characteristics Of VPP

Improved fault-tolerance and ISSU

Improved fault-tolerance and ISSU when compared to running similar
packet processing in the kernel:

	crashes seldom require more than a process restart

	software updates do not require system reboots

	development environment is easier to use and perform debug than similar kernel code

	user-space debug tools (gdb, valgrind, wireshark)

	leverages widely-available kernel modules (uio, igb_uio): DMA-safe memory

Runs as a Linux user-space process:

	same image works in a VM, in a Linux container, or over a host kernel

	KVM and ESXi: NICs via PCI direct-map

	Vhost-user, netmap, virtio paravirtualized NICs

	Tun/tap drivers

	DPDK poll-mode device drivers

Integrated with the DPDK, VPP supports existing NIC devices including:

	Intel i40e, Intel ixgbe physical and virtual functions, Intel e1000, virtio, vhost-user, Linux TAP

	HP rebranded Intel Niantic MAC/PHY

	Cisco VIC

Security issues considered:

	Extensive white-box testing by Cisco’s security team

	Image segment base address randomization

	Shared-memory segment base address randomization

	Stack bounds checking

	Debug CLI “chroot”

The vector method of packet processing has been proven as the primary
punt/inject path on major architectures.

Supported Architectures

Supported Architectures

	The VPP platform supports:

	x86/64

Supported Packaging Models

The VPP platform supports package installation on the following
operating systems:

Supported Packaging Models

	Operating System:

	Debian

	Ubuntu 16.04

	CentOS 7.3

Performance Expectations

One of the benefits of this implementation of VPP is its high
performance on relatively low-power computing. This high level of
performance is based on the following highlights:

	High-performance user-space network stack for commodity hardware

	The same code for host, VMs, Linux containers

	Integrated vhost-user virtio backend for high speed VM-to-VM connectivity

	L2 and L3 functionality, multiple encapsulations

	Leverages best-of-breed open source driver technology: DPDK

	Extensible by use of plugins

	Control-plane / orchestration-plane via standards-based APIs

Performance Metrics

The VPP platform has been shown to provide the following approximate
performance metrics:

	Multiple MPPS from a single x86_64 core

	>100Gbps full-duplex on a single physical host

	Example of multi-core scaling benchmarks (on UCS-C240 M3, 3.5 gHz, all memory channels forwarded, simple ipv4 forwarding):

	1 core: 9 MPPS in+out

	2 cores: 13.4 MPPS in+out

	4 cores: 20.0 MPPS in+out

NDR Rates

NDR rates for 2p10GE, 1 core, L2 NIC-to_NIC

The following chart shows the NDR rates on: 2p10GE, 1 core, L2
NIC-to_NIC.

[image: NDR rate for 2p10GE, 1 core, L2 NIC-to_NIC]
NDR rate for 2p10GE, 1 core, L2 NIC-to_NIC

NDR rates for 2p10GE, 1 core, L2 NIC-to-VM/VM-to-VM

The following chart shows the NDR rates on: 2p10GE, 1 core, L2
NIC-to-VM/VM-to-VM .

[image: NDR rates for 2p10GE, 1 core, L2 NIC-to-VM/VM-to-VM]
NDR rates for 2p10GE, 1 core, L2 NIC-to-VM/VM-to-VM

NOTE:

	Virtual network infra benchmark of efficiency

	All tests per connection only, single core

	Potential higher performance with more connections, more cores

	Latest SW: OVSDPDK 2.4.0, VPP 09/2015

NDR rates VPP versus OVSDPDK

The following chart show VPP performance compared to open-source and
commercial reports.

The rates reflect VPP and OVSDPDK performance tested on Haswell x86
platform with E5-2698v3 2x16C 2.3GHz. The graphs shows NDR rates for 12
port 10GE, 16 core, IPv4.

[image: VPP and OVSDPDK Comparison]
VPP and OVSDPDK Comparison

List of Features

IPv4/IPv6

	14+ MPPS, single core

	Multimillion entry FIBs

	Input Checks

	Source RPF

	TTL expiration

	header checksum

	L2 length < IP length

	ARP resolution/snooping

	ARP proxy

	Thousands of VRFs

	Controlled cross-VRF lookups

	Multipath – ECMP and Unequal Cost

	Multiple million Classifiers - Arbitrary N-tuple

	VLAN Support – Single/Double tag

IPv4

	GRE, MPLS-GRE, NSH-GRE,

	VXLAN

	IPSEC

	DHCP client/proxy

IPv6

	Neighbor discovery

	Router Advertisement

	DHCPv6 Proxy

	L2TPv3

	Segment Routing

	MAP/LW46 – IPv4aas

	iOAM

MPLS

	MPLS-o-Ethernet – Deep label stacks supported

L2

	VLAN Support

	Single/ Double tag

	L2 forwarding with EFP/BridgeDomain concepts

	VTR – push/pop/Translate (1:1,1:2, 2:1,2:2)

	Mac Learning – default limit of 50k addresses

	Bridging – Split-horizon group support/EFP Filtering

	Proxy Arp

	Arp termination

	IRB – BVI Support with RouterMac assignment

	Flooding

	Input ACLs

	Interface cross-connect

Setup

	VPP Configuration Utility
	Summary / Purpose of VPP Configuration Utility

	Use
	Ubuntu: Install and Run

	For Developers
	Steps to Run the Utility

	Uploading to PyPi

	Configuration Tool Main Menu

	Command 1. Show System Information
	Before Configuration

	After Configuration

	Command 2. Dry Run

	Command 3. Apply Full Configuration

	Command 4. List/Install/Uninstall VPP

	Command 5. Execute Basic tests
	Command 1. Set IPv4 Addresses

VPP Configuration Utility

	Summary / Purpose of VPP Configuration Utility

	Use
	Ubuntu: Install and Run

	For Developers
	Steps to Run the Utility

	Uploading to PyPi

	Configuration Tool Main Menu

	Command 1. Show System Information
	Before Configuration

	After Configuration

	Command 2. Dry Run

	Command 3. Apply Full Configuration

	Command 4. List/Install/Uninstall VPP

	Command 5. Execute Basic tests
	Command 1. Set IPv4 Addresses

Summary / Purpose of VPP Configuration Utility

The purpose of the VPP configuration utility is to allow the user to
configure VPP in a simple and safe manner. The utility takes input from
the user and then modifies the key configuration files. The user can
then examine these files to be sure they are correct and then actually
apply the configuration. The utility also includes an installation
utility and some basic tests. This utility is currently released with
release 17.10.

Verified and Supported Operating Systems

	Ubuntu16.04

	centOS7

	RHEL7

Use

The installation and executing of the VPP configuration utility is
simple. First install the python pip module [https://pip.pypa.io/en/stable/installing/]. Then using pip,

Ubuntu: Install and Run

Run the terminal as root

$ sudo -H bash

Afterwards, install vpp-config on root.

pip install vpp-config

Once vpp-config is installed simply type:

vpp-config

Welcome to the VPP system configuration utility

These are the files we will modify:
 /etc/vpp/startup.conf
 /etc/sysctl.d/80-vpp.conf
 /etc/default/grub

Before we change them, we'll create working copies in /usr/local/vpp/vpp-config/dryrun
Please inspect them carefully before applying the actual configuration (option 3)!

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command:
and answer the questions. If you are not sure what to answer choose the
default.

Note

For yes or no questions the capital letter designates the default.
For example, for a question that shows [Y/n] Y is the default.
For numbers the default is within the brackets for example for a question that shows [1024]. 1024 is the default.

For Developers

Modifying the code is reasonable simple. Edit and debug the code from
the root directory. In order to do this, we need a script that will copy
or data files to the proper place. This is where they end up with pip
install.

	Ubuntu

/usr/local/vpp/vpp-config

	Centos

/usr/vpp/vpp-config

Run this script to copy the relevant files correctly:

./scripts/cp-data.sh

Run this script to clean the environment.

./scripts/clean.sh

Note

This allows the developer to start from scratch.

Steps to Run the Utility

These are the steps to run the utility in this environment. The scripts are meant to be run from the root directory.

./scripts/clean.sh
./scripts/cp-data.sh
./vpp_config.py

When the utility is installed with pip the wrapper scripts/vpp-config is
written to /usr/local/bin. However, the starting point when debugging
this script locally is

 ./vpp_config.py

Run the utility by executing (from the root directory)

::

 ./vpp_config.py

The start point in the code is in vpp_config.py. Most of the work is
done in the files in ./vpplib

Uploading to PyPi

To upload this utility to PyPi, simply do the following:

Note

Currently, I have my own account. When we want everyone to contribute we will need to change that.

$ sudo -H bash
cd vpp_config
python setup.py sdist bdist_wheel
twine upload dist/*

Configuration Tool Main Menu

	Show basic system information

	Dry Run

	Full Configuration

	List/Install/Uninstall VPP

	Execute some basic tests

Command 1. Show System Information

Before Configuration

When the utility is first started we can show the basic system
information.

vpp-config

Welcome to the VPP system configuration utility

These are the files we will modify:
 /etc/vpp/startup.conf
 /etc/sysctl.d/80-vpp.conf
 /etc/default/grub

Before we change them, we'll create working copies in /usr/local/vpp/vpp-config/dryrun
Please inspect them carefully before applying the actual configuration (option 3)!

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1

==============================
NODE: DUT1

CPU:
 Model name: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
 CPU(s): 32
 Thread(s) per core: 2
 Core(s) per socket: 8
 Socket(s): 2
 NUMA node0 CPU(s): 0-7,16-23
 NUMA node1 CPU(s): 8-15,24-31
 CPU max MHz: 3600.0000
 CPU min MHz: 1200.0000
 SMT: Enabled

VPP Threads: (Name: Cpu Number)

Grub Command Line:
 Current: BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro
 Configured: GRUB_CMDLINE_LINUX_DEFAULT=""

Huge Pages:
 Total System Memory : 65863484 kB
 Total Free Memory : 56862700 kB
 Actual Huge Page Total : 1024
 Configured Huge Page Total : 1024
 Huge Pages Free : 1024
 Huge Page Size : 2048 kB

Devices:

Devices with link up (can not be used with VPP):
0000:08:00.0 enp8s0f0 I350 Gigabit Network Connection

Devices bound to kernel drivers:
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

No devices bound to DPDK drivers

VPP Service Status:
 Not Installed

==============================

After Configuration

When we show the system information after the system is configured
notice that the VPP workers and the VPP main core is on the correct Numa
Node. Notice also that VPP is running and the interfaces are shown.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1

==============================
NODE: DUT1

CPU:
 Model name: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
 CPU(s): 32
 Thread(s) per core: 2
 Core(s) per socket: 8
 Socket(s): 2
 NUMA node0 CPU(s): 0-7,16-23
 NUMA node1 CPU(s): 8-15,24-31
 CPU max MHz: 3600.0000
 CPU min MHz: 1200.0000
 SMT: Enabled

VPP Threads: (Name: Cpu Number)
 vpp_main : 8
 vpp_wk_1 : 10
 vpp_wk_0 : 9
 vpp_stats : 0

Grub Command Line:
 Current: BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro
 Configured: GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=8,9-10 nohz_full=8,9-10 rcu_nocbs=8,9-10"

Huge Pages:
 Total System Memory : 65863484 kB
 Total Free Memory : 42048632 kB
 Actual Huge Page Total : 8192
 Configured Huge Page Total : 8192
 Huge Pages Free : 7936
 Huge Page Size : 2048 kB

Devices:
Total Number of Buffers: 25600

Devices with link up (can not be used with VPP):
0000:08:00.0 enp8s0f0 I350 Gigabit Network Connection

Devices bound to kernel drivers:
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Devices bound to DPDK drivers:
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Devices in use by VPP:
Name Socket RXQs RXDescs TXQs TXDescs
TenGigabitEthernet86/0/0 1 2 1024 3 1024
TenGigabitEthernet86/0/1 1 2 1024 3 1024

VPP Service Status:
 active (running)

==============================

Command 2. Dry Run

With VPP installed we can now execute a configuration dry run. This
option will create the configuration files and put them in a dryrun
directory. This directory is located for Ubuntu in
/usr/local/vpp/vpp-config/dryrun and for Centos in
/usr/vpp/vpp-config/dryrun. These files should be examined to be sure
that they are valid before actually applying the configuration with
option 3.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 2

These device(s) are currently NOT being used by VPP or the OS.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to give any of these devices back to the OS [Y/n]? y
Would you like to use device 0000:86:00.0 for the OS [y/N]? y
Would you like to use device 0000:86:00.1 for the OS [y/N]? y

These devices have kernel interfaces, but appear to be safe to use with VPP.

PCI ID Kernel Interface(s) Description
--
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.0 enp134s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 enp134s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to use any of these device(s) for VPP [y/N]? y
Would you like to use device 0000:90:00.0 for VPP [y/N]?
Would you like to use device 0000:8f:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.1 for VPP [y/N]?
Would you like to use device 0000:08:00.1 for VPP [y/N]?
Would you like to use device 0000:02:00.0 for VPP [y/N]?
Would you like to use device 0000:02:00.1 for VPP [y/N]?
Would you like to use device 0000:86:00.0 for VPP [y/N]? y
Would you like to use device 0000:86:00.1 for VPP [y/N]? y

These device(s) will be used by VPP.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to remove any of these device(s) [y/N]?

These device(s) will be used by VPP, please rerun this option if this is incorrect.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Your system has 32 core(s) and 2 Numa Nodes.
To begin, we suggest not reserving any cores for VPP or other processes.
Then to improve performance try reserving cores as needed.

How many core(s) do you want to reserve for processes other than VPP? [0-16][0]?
How many core(s) shall we reserve for VPP workers[0-4][0]? 2
Should we reserve 1 core for the VPP Main thread? [y/N]? y

How many active-open / tcp client sessions are expected [0-10000000][0]?
How many passive-open / tcp server sessions are expected [0-10000000][0]?

There currently 1024 2048 kB huge pages free.
Do you want to reconfigure the number of huge pages [y/N]? y

There currently a total of 1024 huge pages.
How many huge pages do you want [1024 - 19414][1024]? 8192

Command 3. Apply Full Configuration

After the configuration files have been examined we can apply the
configuration with option 3. Notice the default is NOT to change the
grub command line. If the option to change the grub command line is
selected a reboot will be required.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 3

We are now going to configure your system(s).

Are you sure you want to do this [Y/n]? y
These are the changes we will apply to
the huge page file (/etc/sysctl.d/80-vpp.conf).

1,2d0
< vm.nr_hugepages=1024
4,7c2,3
< vm.max_map_count=3096

> vm.nr_hugepages=8192
> vm.max_map_count=17408
8a5
> kernel.shmmax=17179869184
10,15d6
< kernel.shmmax=2147483648

Are you sure you want to apply these changes [Y/n]?
These are the changes we will apply to
the VPP startup file (/etc/vpp/startup.conf).

>
> main-core 8
> corelist-workers 9-10
>
> scheduler-policy fifo
> scheduler-priority 50
>
67,68c56,66
< # dpdk {

> dpdk {
>
> dev 0000:86:00.0 {
> num-rx-queues 2
> }
> dev 0000:86:00.1 {
> num-rx-queues 2
> }
> num-mbufs 25600
>
124c122
< # }

> }

Are you sure you want to apply these changes [Y/n]?

The configured grub cmdline looks like this:
GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=8,9-10 nohz_full=8,9-10 rcu_nocbs=8,9-10"

The current boot cmdline looks like this:
BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro

Do you want to keep the current boot cmdline [Y/n]?

Command 4. List/Install/Uninstall VPP

Notice when the basic system information was shown, VPP was not
installed.

VPP Service Status:
 Not Installed

==============================

We can now install VPP with option 4

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 4

There are no VPP packages on node localhost.
Do you want to install VPP [Y/n]? y
INFO:root: Local Command: ls /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: Local Command: rm /etc/apt/sources.list.d/99fd.io.list
INFO:root: Local Command: echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./
" | sudo tee /etc/apt/sources.list.d/99fd.io.list
INFO:root: deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./
.......

Command 5. Execute Basic tests

Command 1. Set IPv4 Addresses

Once VPP is configured we can add some ip addresses to the configured
interfaces. Once this is done you should be able to ping the configured
addresses and VPP is ready to use. After this option, is run a script is
created in /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up for
Ubuntu and /usr/vpp/vpp-config/scripts/set_int_ipv4_and_up for Centos.
This script can be used to configure the ip addresses in the future.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 5

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 Not Set dn
TenGigabitEthernet86/0/1 Not Set dn

Would you like to keep this configuration [Y/n]? n
Would you like add address to interface TenGigabitEthernet86/0/0 [Y/n]?
Please enter the IPv4 Address [n.n.n.n/n]: 30.0.0.2/24
Would you like add address to interface TenGigabitEthernet86/0/1 [Y/n]? y
Please enter the IPv4 Address [n.n.n.n/n]: 40.0.0.2/24

A script as been created at /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up
This script can be run using the following:
vppctl exec /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 30.0.0.2/24 up
TenGigabitEthernet86/0/1 40.0.0.2/24 up

Would you like to keep this configuration [Y/n]?

Tasks

	Writing and pushing VPP Documentation
	Getting and Building the VPP Documentation
	Overview

	Build and View Instructions

	Pushing a patch to the VPP Documentation
	Pushing a Patch

	Reviewing a Patch

	Getting the Latest Sources

	Installing VPP Binaries from Packages
	Package Descriptions
	vpp

	vpp-lib

	vpp-plugins

	vpp-dbg

	vpp-dev

	vpp-api-java

	vpp-api-python

	vpp-api-lua

	Installing on Ubuntu
	The fd.io repo

	Install the mandatory packages

	Install the optional packages

	Uninstall the packages

	Installing on Centos
	The fd.io repo
	CentOS 7.3 - VPP Release RPMs (Latest)

	CentOS 7.3 - VPP stable/1804 branch RPMs

	CentOS 7.3 - VPP master branch RPMs (in development)

	Install VPP RPMs

	Install the optional RPMs

	Uninstall the VPP RPMs

	Installing on openSUSE
	Blog post

	Installing
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Uninstall
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Downloading the jvpp jar
	Getting jvpp jar

	Getting jvpp via maven

Writing and pushing VPP Documentation

	Getting and Building the VPP Documentation
	Overview

	Build and View Instructions

	Pushing a patch to the VPP Documentation
	Pushing a Patch

	Reviewing a Patch

	Getting the Latest Sources

Getting and Building the VPP Documentation

Overview

This repository contains the sources for much of the VPP documentation. These instructions show
how most of the VPP documentation sources are obtained anbd built.

Build and View Instructions

I build and load the documents using a mac, but these instuctions should be portable
to any platform. I used the Python virtual environment.

For more information on how to use the Python virtual enviroment check out
Installing packages using pip and virtualenv [https://packaging.python.org/guides/installing-using-pip-and-virtualenv/].

	Get the repository

git clone https://github.com/fdioDocs/vpp-docs
cd vpp-docs

	Install the virtual environment

python -m pip install --user virtualenv
python -m virtualenv env
source env/bin/activate
pip install -r etc/requirements.txt

Note

To exit from the virtual environment execute:

deactivate

	Build the html files

cd docs
make html

	View the results.

To view the results start a browser and open the file:

<THE CLONED DIRECTORY>/docs/_build/html/index.html

Pushing a patch to the VPP Documentation

Pushing a Patch

I build and load the documents using a mac, but these instuctions should be portable
to any platform. I used the Python virtual environment.

	Review the changes

git status

	Specify which files that will be pushed

git add <filename>

	Commit the changes locally

git commit -s

	Submit the changes for review

git review

Reviewing a Patch

	Getting the patch for review

git review -d <review number>

	Look at the changes

git status

	Edit the changes you would like to add

	Specify which files you changed

git add <filename>

	Commit the changes locally

git commit --amend -s

	Submit the changes for review

git review

Getting the Latest Sources

git reset --hard origin/master
git checkout master

Installing VPP Binaries from Packages

If you are simply using vpp, it can be convenient to simply install the packages. The instructions below
will describe how pull, install and install the VPP packages.

Package Descriptions

The following is a brief description of the packages to be installed with VPP.

	vpp

	vpp-lib

	vpp-plugins

	vpp-dbg

	vpp-dev

	vpp-api-java

	vpp-api-python

	vpp-api-lua

Installing on Ubuntu

The following are instructions on how to install VPP on Ubuntu.

	The fd.io repo

	Install the mandatory packages

	Install the optional packages

	Uninstall the packages

Installing on Centos

The following are instructions on how to install VPP on Centos.

	The fd.io repo
	CentOS 7.3 - VPP Release RPMs (Latest)

	CentOS 7.3 - VPP stable/1804 branch RPMs

	CentOS 7.3 - VPP master branch RPMs (in development)

	Install VPP RPMs

	Install the optional RPMs

	Uninstall the VPP RPMs

Installing on openSUSE

The following are instructions on how to install VPP on openSUSE.

	Blog post

	Installing
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Uninstall
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

Downloading the jvpp jar

The following are instructions on how to download the jvpp jar

	Getting jvpp jar

	Getting jvpp via maven

vpp

Vector Packet Processing–executables

	vpp - the vector packet engine

	vpp_api_test - vector packet engine API test tool

	vpp_json_test - vector packet engine JSON test tool

vpp-lib

Vector Packet Processing–runtime libraries. This package contains the VPP shared libraries, including:

	vppinfra - foundation library supporting vectors, hashes, bitmaps, pools, and string formatting.

	svm - vm library

	vlib - vector processing library

	vlib-api - binary API library

	vnet - network stack library

vpp-plugins

Vector Packet Processing–plugin modules

	acl

	dpdk

	flowprobe

	gtpu

	ixge

	kubeproxy

	l2e

	lb

	memif

	nat

	pppoe

	sixrd

	stn

vpp-dbg

Vector Packet Processing–debug symbols

vpp-dev

Vector Packet Processing–development support. This package contains
development support files for the VPP libraries

vpp-api-java

JAVA binding for the VPP Binary API.

vpp-api-python

Python binding for the VPP Binary API.

vpp-api-lua

Lua binding for the VPP Binary API.

The fd.io repo

1. Pick the Ubuntu version

	Ubuntu 16.04 - Xenial

export UBUNTU="xenial"

2. Pick the VPP version

	Latest VPP Release

unset -v RELEASE

	Latest VPP 18.04 Throttle Branch

export RELEASE=".stable.1804"

	Latest VPP 18.01 Throttle Branch

export RELEASE=".stable.1801"

	Latest VPP 17.10 Throttle Branch

export RELEASE=".stable.1710"

	Latest VPP 17.07 Throttle Branch

export RELEASE=".stable.1707"

	MASTER (in development)

export RELEASE=".master"

3. To write the fd.io sources list execute:

sudo rm /etc/apt/sources.list.d/99fd.io.list
echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io$RELEASE.ubuntu.$UBUNTU.main/ ./" | sudo tee -a /etc/apt/sources.list.d/99fd.io.list

Install the mandatory packages

sudo apt-get update
sudo apt-get install vpp vpp-lib vpp-plugin

Install the optional packages

sudo apt-get install vpp-dbg vpp-dev vpp-api-java vpp-api-python vpp-api-lua

Uninstall the packages

sudo apt-get remove --purge vpp*

The fd.io repo

From the following choose one of the releases to install.

CentOS 7.3 - VPP Release RPMs (Latest)

Create a file /etc/yum.repos.d/fdio-release.repo with contents:

[fdio-release]
name=fd.io release branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.centos7/
enabled=1
gpgcheck=0

CentOS 7.3 - VPP stable/1804 branch RPMs

Create a file /etc/yum.repos.d/fdio-release.repo with contents:

[fdio-stable-1804]
name=fd.io stable/1804 branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.stable.1804.centos7/
enabled=1
gpgcheck=0

CentOS 7.3 - VPP master branch RPMs (in development)

Create a file /etc/yum.repos.d/fdio-release.repo with contents:

[fdio-master]
name=fd.io master branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.master.centos7/
enabled=1
gpgcheck=0

Install VPP RPMs

sudo yum install vpp

Install the optional RPMs

sudo yum install vpp-plugins vpp-devel vpp-api-python vpp-api-lua vpp-api-java

Uninstall the VPP RPMs

sudo yum autoremove vpp*

Blog post

For more information on VPP with openSUSE, please look at the following post.

	https://www.suse.com/communities/blog/vector-packet-processing-vpp-opensuse/

Installing

Top install VPP on openSUSE first pick the following release and execute the appropriate commands.

openSUSE Tumbleweed (rolling release)

sudo zypper install vpp vpp-plugins

openSUSE Leap 42.3

sudo zypper addrepo --name network https://download.opensuse.org/repositories/network/openSUSE_Leap_42.3/network.repo
sudo zypper install vpp vpp-plugins

Uninstall

sudo zypper remove -u vpp vpp-plugins

openSUSE Tumbleweed (rolling release)

sudo zypper remove -u vpp vpp-plugins

openSUSE Leap 42.3

sudo zypper remove -u vpp vpp-plugins
sudo zypper removerepo network

Getting jvpp jar

VPP provides java bindings which can be downloaded at:

	https://nexus.fd.io/content/repositories/fd.io.release/io/fd/vpp/jvpp-core/18.01/jvpp-core-18.01.jar

Getting jvpp via maven

1. Add the following to the repositories section in your ~/.m2/settings.xml to pick up the fd.io maven repo:

 <repository>
 <id>fd.io-release</id>
 <name>fd.io-release</name>
 <url>https://nexus.fd.io/content/repositories/fd.io.release/</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
</repository>

For more information on setting up maven repositories in settings.xml, please look at:

	https://maven.apache.org/guides/mini/guide-multiple-repositories.html

2. Then you can get jvpp by putting in the dependencies section of your pom.xml file:

<dependency>
 <groupId>io.fd.vpp</groupId>
 <artifactId>jvpp-core</artifactId>
 <version>17.10</version>
</dependency>

For more information on maven dependency managment, please look at:

	https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Guides

	Progressive VPP Tutorial
	Introduction

	Exercise: Setting up your environment

	Vagrant Set Up
	Action: Install Virtualbox

	Action: Install Vagrant

	Action: Create a Vagrant Directory

	Create a Vagrantfile

	Action: Vagrant Up

	Action: ssh to Vagrant VM

	Exercise: Install VPP

	Exercise: VPP basics

	VPP command learned in this exercise

	Action: Remove dpdk plugin

	Action: Run VPP

	Action: Send commands to VPP using vppctl

	Action: Start a VPP shell using vppctl

	Exercise: Create an interface
	Skills to be Learned

	VPP command learned in this exercise
	Topology

	Initial State

	Action: Create veth interfaces on host

	Action: Create vpp host- interface

	Action: Add trace

	Action: Ping from host to vpp

	Action: Examine Trace of ping from host to vpp

	Action: Clear trace buffer

	Action: ping from vpp to host

	Action: Examine Trace of ping from vpp to host

	Action: Examine arp tables

	Action: Examine routing table

	Exercise: Connecting two vpp instances
	Background

	Skills to be Learned

	Topology

	Initial state

	Action: Running a second vpp instances

	Action: Create memif interface on vpp1

	Action: Create memif interface on vpp2

	Action: Ping from vpp1 to vpp2

	Exercise: Routing
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial State

	Action: Setup host route

	Setup return route on vpp2

	Ping from host through vpp1 to vpp2

	Exercise: Switching
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Run vpp instances

	Action: Connect vpp1 to host

	Action: Connect vpp1 to vpp2

	Action: Configure Bridge Domain on vpp1

	Action: Configure loopback interface on vpp2

	Action: Configure bridge domain on vpp2

	Action: Ping from host to vpp and vpp to host

	Action: Examine l2 fib

	Source NAT
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Install vpp-plugins

	Action: Create vpp instance

	Action: Create veth interfaces

	Action: Configure vpp outside interface

	Action: Configure snat

	Action: Prepare to Observe Snat

	Action: Ping via snat

	Action: Confirm snat

Progressive VPP Tutorial

	Introduction

	Exercise: Setting up your environment

	Vagrant Set Up
	Action: Install Virtualbox

	Action: Install Vagrant

	Action: Create a Vagrant Directory

	Create a Vagrantfile

	Action: Vagrant Up

	Action: ssh to Vagrant VM

	Exercise: Install VPP

	Exercise: VPP basics

	VPP command learned in this exercise

	Action: Remove dpdk plugin

	Action: Run VPP

	Action: Send commands to VPP using vppctl

	Action: Start a VPP shell using vppctl

	Exercise: Create an interface
	Skills to be Learned

	VPP command learned in this exercise
	Topology

	Initial State

	Action: Create veth interfaces on host

	Action: Create vpp host- interface

	Action: Add trace

	Action: Ping from host to vpp

	Action: Examine Trace of ping from host to vpp

	Action: Clear trace buffer

	Action: ping from vpp to host

	Action: Examine Trace of ping from vpp to host

	Action: Examine arp tables

	Action: Examine routing table

	Exercise: Connecting two vpp instances
	Background

	Skills to be Learned

	Topology

	Initial state

	Action: Running a second vpp instances

	Action: Create memif interface on vpp1

	Action: Create memif interface on vpp2

	Action: Ping from vpp1 to vpp2

	Exercise: Routing
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial State

	Action: Setup host route

	Setup return route on vpp2

	Ping from host through vpp1 to vpp2

	Exercise: Switching
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Run vpp instances

	Action: Connect vpp1 to host

	Action: Connect vpp1 to vpp2

	Action: Configure Bridge Domain on vpp1

	Action: Configure loopback interface on vpp2

	Action: Configure bridge domain on vpp2

	Action: Ping from host to vpp and vpp to host

	Action: Examine l2 fib

	Source NAT
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Install vpp-plugins

	Action: Create vpp instance

	Action: Create veth interfaces

	Action: Configure vpp outside interface

	Action: Configure snat

	Action: Prepare to Observe Snat

	Action: Ping via snat

	Action: Confirm snat

Introduction

This tutorial is designed for you to be able to run it on a single Ubuntu 16.04 VM on your laptop.
It walks you through some very basic vpp senarios, with a focus on learning vpp commands, doing common actions,
and being able to discover common things about the state of a running vpp.

This is not intended to be a ‘how to run in a production environment’ set of instructions.

Exercise: Setting up your environment

All of these exercises are designed to be performed on an Ubuntu 16.04 (Xenial) box.

If you have an Ubuntu 16.04 box on which you have sudo, you can feel free to use that.

If you do not, a Vagrantfile is provided to setup a basic Ubuntu 16.04 box for you

Vagrant Set Up

Action: Install Virtualbox

If you do not already have virtualbox on your laptop (or if it is not up to date), please download and install it:

https://www.virtualbox.org/wiki/Downloads

Action: Install Vagrant

If you do not already have Vagrant on your laptop (or if it is not up to date), please download it:

https://www.vagrantup.com/downloads.html

Action: Create a Vagrant Directory

Create a directory on your laptop

mkdir fdio-tutorial
cd fdio-tutorial/

Create a Vagrantfile

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

config.vm.box = "puppetlabs/ubuntu-16.04-64-nocm"
config.vm.box_check_update = false

vmcpu=(ENV['VPP_VAGRANT_VMCPU'] || 2)
vmram=(ENV['VPP_VAGRANT_VMRAM'] || 4096)

config.ssh.forward_agent = true

config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--ioapic", "on"]
 vb.memory = "#{vmram}"
 vb.cpus = "#{vmcpu}"
 #support for the SSE4.x instruction is required in some versions of VB.
 vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.1", "1"]
 vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.2", "1"]
end
end

Action: Vagrant Up

Bring up your Vagrant VM:

vagrant up

Action: ssh to Vagrant VM

vagrant ssh

Exercise: Install VPP

Skills to be Learned

	Learn how to install vpp binary packges using apt-get.

Follow the instructions at Installing VPP Binaries for installing xenial vpp packages from the release repo. Please note, certain aspects of this tutorial require vpp 17.10 or later.

Exercise: VPP basics

Skills to be Learned

By the end of the exercise you should be able to:

	Run a vpp instance in a mode which allows multiple vpp processes to run

	Issue vpp commands from the unix shell

	Run a vpp shell and issue it commands

VPP command learned in this exercise

	show ver [https://docs.fd.io/vpp/17.04/clicmd_src_vpp_app.html#clicmd_show_version]

Action: Remove dpdk plugin

In this tutorial, we will be running multiple vpp instances. DPDK does not work well with multiple instances, and so to run multiple instances we will need to disable the dpdk-plugin by removing it:

sudo rm -rf /usr/lib/vpp_plugins/dpdk_plugin.so

..how-to-run-vpp:

Action: Run VPP

VPP runs in userspace. In a production environment you will often run it with DPDK to connect to real NICs or vhost to connect to VMs.
In those circumstances you usually run a single instance of vpp.

For purposes of this tutorial, it is going to be extremely useful to run multiple instances of vpp, and connect them to each other to form
a topology. Fortunately, vpp supports this.

When running multiple vpp instances, each instance needs to have specified a ‘name’ or ‘prefix’. In the example below, the ‘name’ or ‘prefix’ is “vpp1”. Note that only one instance can use the dpdk plugin, since this plugin is trying to acquire a lock on a file.

sudo vpp unix {cli-listen /run/vpp/cli-vpp1.sock} api-segment { prefix vpp1 }

Example Output:

vlib_plugin_early_init:230: plugin path /usr/lib/vpp_plugins

Please note:

	“api-segment {prefix vpp1}” tells vpp how to name the files in /dev/shm/ for your vpp instance differently from the default.

	“unix {cli-listen /run/vpp/cli-vpp1.sock}” tells vpp to use a non-default socket file when being addressed by vppctl.

If you can’t see the vpp process running on the host, activate the nodaemon option to better understand what is happening

sudo vpp unix {nodaemon cli-listen /run/vpp/cli-vpp1.sock} api-segment { prefix vpp1 }

Example Output with errors from the dpdk plugin:

vlib_plugin_early_init:356: plugin path /usr/lib/vpp_plugins
load_one_plugin:184: Loaded plugin: acl_plugin.so (Access Control Lists)
load_one_plugin:184: Loaded plugin: dpdk_plugin.so (Data Plane Development Kit (DPDK))
load_one_plugin:184: Loaded plugin: flowprobe_plugin.so (Flow per Packet)
load_one_plugin:184: Loaded plugin: gtpu_plugin.so (GTPv1-U)
load_one_plugin:184: Loaded plugin: ila_plugin.so (Identifier-locator addressing for IPv6)
load_one_plugin:184: Loaded plugin: ioam_plugin.so (Inbound OAM)
load_one_plugin:114: Plugin disabled (default): ixge_plugin.so
load_one_plugin:184: Loaded plugin: kubeproxy_plugin.so (kube-proxy data plane)
load_one_plugin:184: Loaded plugin: l2e_plugin.so (L2 Emulation)
load_one_plugin:184: Loaded plugin: lb_plugin.so (Load Balancer)
load_one_plugin:184: Loaded plugin: libsixrd_plugin.so (IPv6 Rapid Deployment on IPv4 Infrastructure (RFC5969))
load_one_plugin:184: Loaded plugin: memif_plugin.so (Packet Memory Interface (experimetal))
load_one_plugin:184: Loaded plugin: nat_plugin.so (Network Address Translation)
load_one_plugin:184: Loaded plugin: pppoe_plugin.so (PPPoE)
load_one_plugin:184: Loaded plugin: stn_plugin.so (VPP Steals the NIC for Container integration)
vpp[10211]: vlib_pci_bind_to_uio: Skipping PCI device 0000:00:03.0 as host interface eth0 is up
vpp[10211]: vlib_pci_bind_to_uio: Skipping PCI device 0000:00:04.0 as host interface eth1 is up
vpp[10211]: dpdk_config:1240: EAL init args: -c 1 -n 4 --huge-dir /run/vpp/hugepages --file-prefix vpp -b 0000:00:03.0 -b 0000:00:04.0 --master-lcore 0 --socket-mem 64
EAL: No free hugepages reported in hugepages-1048576kB
EAL: Error - exiting with code: 1
Cause: Cannot create lock on '/var/run/.vpp_config'. Is another primary process running?

Action: Send commands to VPP using vppctl

You can send vpp commands with a utility called vppctl.

When running vppctl against a named version of vpp, you will need to run:

sudo vppctl -s /run/vpp/cli-${name}.sock ${cmd}

Note

/run/vpp/cli-${name}.sock

is the particular naming convention used in this tutorial. By default you can set vpp to use what ever socket file name you would like at startup (the default config file uses /run/vpp/cli.sock) if two different vpps are being run (as in this tutorial) you must use distinct socket files for each one.

So to run ‘show ver’ against the vpp instance named vpp1 you would run:

sudo vppctl -s /run/vpp/cli-vpp1.sock show ver

Output:

vpp v17.04-rc0~177-g006eb47 built by ubuntu on fdio-ubuntu1604-sevt at Mon Jan 30 18:30:12 UTC 2017

Action: Start a VPP shell using vppctl

You can also use vppctl to launch a vpp shell with which you can run multiple vpp commands interactively by running:

sudo vppctl -s /run/vpp/cli-${name}.sock

which will give you a command prompt.

Try doing show ver that way:

sudo vppctl -s /run/vpp/cli-vpp1.sock
vpp# show ver

Output:

vpp v17.04-rc0~177-g006eb47 built by ubuntu on fdio-ubuntu1604-sevt at Mon Jan 30 18:30:12 UTC 2017

vpp#

To exit the vppctl shell:

vpp# quit

Exercise: Create an interface

Skills to be Learned

	Create a veth interface in Linux host

	Assign an IP address to one end of the veth interface in the Linux host

	Create a vpp host-interface that connected to one end of a veth interface via AF_PACKET

	Add an ip address to a vpp interface

	Setup a ‘trace’

	View a ‘trace’

	Clear a ‘trace’

	Verify using ping from host

	Ping from vpp

	Examine Arp Table

	Examine ip fib

VPP command learned in this exercise

	create host-interface [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_devices_af_packet.html#clicmd_create_host-interface]

	set int state [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_set_interface_state]

	set int ip address [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_set_interface_ip_address]

	show hardware [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_hardware-interfaces]

	show int [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_interfaces]

	show int addr [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_interfaces]

	trace add [https://docs.fd.io/vpp/17.04/clicmd_src_vlib.html#clicmd_trace_add]

	clear trace [https://docs.fd.io/vpp/17.04/clicmd_src_vlib.html#clicmd_clear_trace]

	ping [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_ping]

	show ip arp [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ethernet.html#clicmd_show_ip_arp]

	show ip fib [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_fib.html#clicmd_show_ip_fib]

Topology

[image: Figure: Create Interface Topology]
Figure: Create Interface Topology

Initial State

The initial state here is presumed to be the final state from the
exercise VPP Basics

Action: Create veth interfaces on host

In Linux, there is a type of interface call ‘veth’. Think of a ‘veth’
interface as being an interface that has two ends to it (rather than
one).

Create a veth interface with one end named vpp1out and the other
named vpp1host

sudo ip link add name vpp1out type veth peer name vpp1host

Turn up both ends:

sudo ip link set dev vpp1out up
sudo ip link set dev vpp1host up

Assign an IP address

sudo ip addr add 10.10.1.1/24 dev vpp1host

Display the result:

sudo ip addr show vpp1host

Example Output:

10: vpp1host@vpp1out: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
 link/ether 5e:97:e3:41:aa:b8 brd ff:ff:ff:ff:ff:ff
 inet 10.10.1.1/24 scope global vpp1host
 valid_lft forever preferred_lft forever
 inet6 fe80::5c97:e3ff:fe41:aab8/64 scope link
 valid_lft forever preferred_lft forever

Action: Create vpp host- interface

Create a host interface attached to vpp1out.

sudo vppctl -s /run/vpp/cli-vpp1.sock create host-interface name vpp1out

Output:

host-vpp1out

Confirm the interface:

sudo vppctl -s /run/vpp/cli-vpp1.sock show hardware

Example Output:

 Name Idx Link Hardware
host-vpp1out 1 up host-vpp1out
 Ethernet address 02:fe:48:ec:d5:a7
 Linux PACKET socket interface
local0 0 down local0
 local

Turn up the interface:

sudo vppctl -s /run/vpp/cli-vpp1.sock set int state host-vpp1out up

Confirm the interface is up:

sudo vppctl -s /run/vpp/cli-vpp1.sock show int

 Name Idx State Counter Count
host-vpp1out 1 up
local0 0 down

Assign ip address 10.10.1.2/24

sudo vppctl -s /run/vpp/cli-vpp1.sock set int ip address host-vpp1out 10.10.1.2/24

Confirm the ip address is assigned:

sudo vppctl -s /run/vpp/cli-vpp1.sock show int addr

host-vpp1out (up):
 10.10.1.2/24
local0 (dn):

Action: Add trace

sudo vppctl -s /run/vpp/cli-vpp1.sock trace add af-packet-input 10

Action: Ping from host to vpp

ping -c 1 10.10.1.2

PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data.
64 bytes from 10.10.1.2: icmp_seq=1 ttl=64 time=0.557 ms

--- 10.10.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.557/0.557/0.557/0.000 ms

Action: Examine Trace of ping from host to vpp

sudo vppctl -s /run/vpp/cli-vpp1.sock show trace

------------------- Start of thread 0 vpp_main -------------------
Packet 1

00:09:30:397798: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 42 snaplen 42 mac 66 net 80
 sec 0x588fd3ac nsec 0x375abde7 vlan 0 vlan_tpid 0
00:09:30:397906: ethernet-input
 ARP: fa:13:55:ac:d9:50 -> ff:ff:ff:ff:ff:ff
00:09:30:397912: arp-input
 request, type ethernet/IP4, address size 6/4
 fa:13:55:ac:d9:50/10.10.1.1 -> 00:00:00:00:00:00/10.10.1.2
00:09:30:398191: host-vpp1out-output
 host-vpp1out
 ARP: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 reply, type ethernet/IP4, address size 6/4
 02:fe:48:ec:d5:a7/10.10.1.2 -> fa:13:55:ac:d9:50/10.10.1.1

Packet 2

00:09:30:398227: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd3ac nsec 0x37615060 vlan 0 vlan_tpid 0
00:09:30:398295: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:09:30:398298: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398300: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398303: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398305: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398307: ip4-icmp-echo-request
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398317: ip4-load-balance
 fib 0 dpo-idx 10 flow hash: 0x0000000e
 ICMP: 10.10.1.2 -> 10.10.1.1
 tos 0x00, ttl 64, length 84, checksum 0xbef3
 fragment id 0x659f, flags DONT_FRAGMENT
 ICMP echo_reply checksum 0x103c
00:09:30:398318: ip4-rewrite
 tx_sw_if_index 1 dpo-idx 2 : ipv4 via 10.10.1.1 host-vpp1out: IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50 flow hash: 0x00000000
 IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 ICMP: 10.10.1.2 -> 10.10.1.1
 tos 0x00, ttl 64, length 84, checksum 0xbef3
 fragment id 0x659f, flags DONT_FRAGMENT
 ICMP echo_reply checksum 0x103c
00:09:30:398320: host-vpp1out-output
 host-vpp1out
 IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 ICMP: 10.10.1.2 -> 10.10.1.1
 tos 0x00, ttl 64, length 84, checksum 0xbef3
 fragment id 0x659f, flags DONT_FRAGMENT
 ICMP echo_reply checksum 0x103c

Action: Clear trace buffer

sudo vppctl -s /run/vpp/cli-vpp1.sock clear trace

Action: ping from vpp to host

sudo vppctl -s /run/vpp/cli-vpp1.sock ping 10.10.1.1

64 bytes from 10.10.1.1: icmp_seq=1 ttl=64 time=.0865 ms
64 bytes from 10.10.1.1: icmp_seq=2 ttl=64 time=.0914 ms
64 bytes from 10.10.1.1: icmp_seq=3 ttl=64 time=.0943 ms
64 bytes from 10.10.1.1: icmp_seq=4 ttl=64 time=.0959 ms
64 bytes from 10.10.1.1: icmp_seq=5 ttl=64 time=.0858 ms

Statistics: 5 sent, 5 received, 0% packet loss

Action: Examine Trace of ping from vpp to host

sudo vppctl -s /run/vpp/cli-vpp1.sock show trace

------------------- Start of thread 0 vpp_main -------------------
Packet 1

00:12:47:155326: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd471 nsec 0x161c61ad vlan 0 vlan_tpid 0
00:12:47:155331: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:47:155334: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155335: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155336: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155339: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155342: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 1
00:12:47:155349: error-drop
 ip4-icmp-input: unknown type

Packet 2

00:12:48:155330: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd472 nsec 0x1603e95b vlan 0 vlan_tpid 0
00:12:48:155337: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:48:155341: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155343: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155344: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155346: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155348: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 2
00:12:48:155351: error-drop
 ip4-icmp-input: unknown type

Packet 3

00:12:49:155331: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd473 nsec 0x15eb77ef vlan 0 vlan_tpid 0
00:12:49:155337: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:49:155341: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155343: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155345: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155349: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155350: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 3
00:12:49:155354: error-drop
 ip4-icmp-input: unknown type

Packet 4

00:12:50:155335: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd474 nsec 0x15d2ffb6 vlan 0 vlan_tpid 0
00:12:50:155341: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:50:155346: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155347: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155350: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155351: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155353: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 4
00:12:50:155356: error-drop
 ip4-icmp-input: unknown type

Packet 5

00:12:51:155324: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd475 nsec 0x15ba8726 vlan 0 vlan_tpid 0
00:12:51:155331: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:51:155335: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155337: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155338: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155341: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155343: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 5
00:12:51:155346: error-drop
 ip4-icmp-input: unknown type

Packet 6

00:12:52:175185: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 42 snaplen 42 mac 66 net 80
 sec 0x588fd476 nsec 0x16d05dd0 vlan 0 vlan_tpid 0
00:12:52:175195: ethernet-input
 ARP: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:52:175200: arp-input
 request, type ethernet/IP4, address size 6/4
 fa:13:55:ac:d9:50/10.10.1.1 -> 00:00:00:00:00:00/10.10.1.2
00:12:52:175214: host-vpp1out-output
 host-vpp1out
 ARP: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 reply, type ethernet/IP4, address size 6/4
 02:fe:48:ec:d5:a7/10.10.1.2 -> fa:13:55:ac:d9:50/10.10.1.1

After examinging the trace, clear it again.

Action: Examine arp tables

sudo vppctl -s /run/vpp/cli-vpp1.sock show ip arp

Time IP4 Flags Ethernet Interface
570.4092 10.10.1.1 D fa:13:55:ac:d9:50 host-vpp1out

Action: Examine routing table

sudo vppctl -s /run/vpp/cli-vpp1.sock show ip fib

ipv4-VRF:0, fib_index 0, flow hash: src dst sport dport proto
0.0.0.0/0
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:0 buckets:1 uRPF:0 to:[0:0]]
 [0] [@0]: dpo-drop ip4
0.0.0.0/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:1 buckets:1 uRPF:1 to:[0:0]]
 [0] [@0]: dpo-drop ip4
10.10.1.1/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:10 buckets:1 uRPF:9 to:[5:420] via:[1:84]]
 [0] [@5]: ipv4 via 10.10.1.1 host-vpp1out: IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
10.10.1.0/24
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:8 buckets:1 uRPF:7 to:[0:0]]
 [0] [@4]: ipv4-glean: host-vpp1out
10.10.1.2/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:9 buckets:1 uRPF:8 to:[6:504]]
 [0] [@2]: dpo-receive: 10.10.1.2 on host-vpp1out
224.0.0.0/4
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:3 buckets:1 uRPF:3 to:[0:0]]
 [0] [@0]: dpo-drop ip4
240.0.0.0/4
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:2 buckets:1 uRPF:2 to:[0:0]]
 [0] [@0]: dpo-drop ip4
255.255.255.255/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:4 buckets:1 uRPF:4 to:[0:0]]
 [0] [@0]: dpo-drop ip4

Exercise: Connecting two vpp instances

Background

memif is a very high performance, direct memory interface type which can
be used between vpp instances to form a topology. It uses a file socket
for a control channel to set up that shared memory.

Skills to be Learned

You will learn the following new skill in this exercise:

	Create a memif interface between two vpp instances

You should be able to perform this exercise with the following skills
learned in previous exercises:

	Run a second vpp instance

	Add an ip address to a vpp interface

	Ping from vpp

Topology

[image: Connect two vpp topolgy]
Connect two vpp topolgy

Initial state

The initial state here is presumed to be the final state from the
exercise Create an
Interface

Action: Running a second vpp instances

You should already have a vpp instance running named: vpp1.

Run a second vpp instance named: vpp2.

Action: Create memif interface on vpp1

Create a memif interface on vpp1:

sudo vppctl -s /run/vpp/cli-vpp1.sock create memif id 0 master

This will create an interface on vpp1 memif0/0 using /run/vpp/memif as
its socket file. The role of vpp1 for this memif inteface is ‘master’.

Use your previously used skills to:

	Set the memif0/0 state to up.

	Assign IP address 10.10.2.1/24 to memif0/0

	Examine memif0/0 via show commands

Action: Create memif interface on vpp2

We want vpp2 to pick up the ‘slave’ role using the same
run/vpp/memif-vpp1vpp2 socket file

sudo vppctl -s /run/vpp/cli-vpp2.sock create memif id 0 slave

This will create an interface on vpp2 memif0/0 using /run/vpp/memif as
its socket file. The role of vpp1 for this memif inteface is ‘slave’.

Use your previously used skills to:

	Set the memif0/0 state to up.

	Assign IP address 10.10.2.2/24 to memif0/0

	Examine memif0/0 via show commands

Action: Ping from vpp1 to vpp2

Ping 10.10.2.2 from vpp1

Ping 10.10.2.1 from vpp2

Exercise: Routing

Skills to be Learned

In this exercise you will learn these new skills:

	Add route to Linux Host routing table

	Add route to vpp routing table

And revisit the old ones:

	Examine vpp routing table

	Enable trace on vpp1 and vpp2

	ping from host to vpp

	Examine and clear trace on vpp1 and vpp2

	ping from vpp to host

	Examine and clear trace on vpp1 and vpp2

vpp command learned in this exercise

	ip route
add [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_ip_route]

Topology

[image: Connect two vpp topology]
Connect two vpp topology

Initial State

The initial state here is presumed to be the final state from the
exercise Connecting two vpp
instances

Action: Setup host route

sudo ip route add 10.10.2.0/24 via 10.10.1.2
ip route

default via 10.0.2.2 dev enp0s3
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15
10.10.1.0/24 dev vpp1host proto kernel scope link src 10.10.1.1
10.10.2.0/24 via 10.10.1.2 dev vpp1host

Setup return route on vpp2

sudo vppctl -s /run/vpp/cli-vpp2.sock ip route add 10.10.1.0/24 via 10.10.2.1

Ping from host through vpp1 to vpp2

	Setup a trace on vpp1 and vpp2

	Ping 10.10.2.2 from the host

	Examine the trace on vpp1 and vpp2

	Clear the trace on vpp1 and vpp2

Exercise: Switching

Skills to be Learned

	Associate an interface with a bridge domain

	Create a loopback interaface

	Create a BVI (Bridge Virtual Interface) for a bridge domain

	Examine a bridge domain

vpp command learned in this exercise

	show
bridge [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_bridge-domain]

	show bridge
detail [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_bridge-domain]

	set int l2
bridge [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_set_interface_l2_bridge]

	show l2fib
verbose [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_l2fib]

Topology

[image: Switching Topology]
Switching Topology

Initial state

Unlike previous exercises, for this one you want to start tabula rasa.

Note: You will lose all your existing config in your vpp instances!

To clear existing config from previous exercises run:

ps -ef | grep vpp | awk '{print $2}'| xargs sudo kill
sudo ip link del dev vpp1host
sudo ip link del dev vpp1vpp2

Action: Run vpp instances

	Run a vpp instance named vpp1

	Run a vpp instance named vpp2

Action: Connect vpp1 to host

	Create a veth with one end named vpp1host and the other named
vpp1out.

	Connect vpp1out to vpp1

	Add ip address 10.10.1.1/24 on vpp1host

Action: Connect vpp1 to vpp2

	Create a veth with one end named vpp1vpp2 and the other named
vpp2vpp1.

	Connect vpp1vpp2 to vpp1.

	Connect vpp2vpp1 to vpp2.

Action: Configure Bridge Domain on vpp1

Check to see what bridge domains already exist, and select the first
bridge domain number not in use:

sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain

ID Index Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
0 0 off off off off off local0

In the example above, there is bridge domain ID ‘0’ already. Even though
sometimes we might get feedback as below:

no bridge-domains in use

the bridge domain ID ‘0’ still exists, where no operations are
supported. For instance, if we try to add host-vpp1out and host-vpp1vpp2
to bridge domain ID 0, we will get nothing setup.

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1out 0
sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1vpp2 0
sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain 0 detail

show bridge-domain: No operations on the default bridge domain are supported

So we will create bridge domain 1 instead of playing with the default
bridge domain ID 0.

Add host-vpp1out to bridge domain ID 1

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1out 1

Add host-vpp1vpp2 to bridge domain ID1

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1vpp2 1

Examine bridge domain 1:

sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain 1 detail

BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
 1 1 0 off on on on on off N/A

 Interface If-idx ISN SHG BVI TxFlood VLAN-Tag-Rewrite
 host-vpp1out 1 1 0 - * none
 host-vpp1vpp2 2 1 0 - * none

Action: Configure loopback interface on vpp2

sudo vppctl -s /run/vpp/cli-vpp2.sock create loopback interface

loop0

Add the ip address 10.10.1.2/24 to vpp2 interface loop0. Set the state
of interface loop0 on vpp2 to ‘up’

Action: Configure bridge domain on vpp2

Check to see the first available bridge domain ID (it will be 1 in this
case)

Add interface loop0 as a bridge virtual interface (bvi) to bridge domain
1

sudo vppctl -s /run/vpp/cli-vpp2.sock set int l2 bridge loop0 1 bvi

Add interface vpp2vpp1 to bridge domain 1

sudo vppctl -s /run/vpp/cli-vpp2.sock set int l2 bridge host-vpp2vpp1 1

Examine the bridge domain and interfaces.

Action: Ping from host to vpp and vpp to host

	Add trace on vpp1 and vpp2

	ping from host to 10.10.1.2

	Examine and clear trace on vpp1 and vpp2

	ping from vpp2 to 10.10.1.1

	Examine and clear trace on vpp1 and vpp2

Action: Examine l2 fib

sudo vppctl -s /run/vpp/cli-vpp1.sock show l2fib verbose

 Mac Address BD Idx Interface Index static filter bvi Mac Age (min)
 de:ad:00:00:00:00 1 host-vpp1vpp2 2 0 0 0 disabled
 c2:f6:88:31:7b:8e 1 host-vpp1out 1 0 0 0 disabled
2 l2fib entries

sudo vppctl -s /run/vpp/cli-vpp2.sock show l2fib verbose

 Mac Address BD Idx Interface Index static filter bvi Mac Age (min)
 de:ad:00:00:00:00 1 loop0 2 1 0 1 disabled
 c2:f6:88:31:7b:8e 1 host-vpp2vpp1 1 0 0 0 disabled
2 l2fib entries

Source NAT

Skills to be Learned

	Abusing networks namespaces for fun and profit

	Configuring snat address

	Configuring snat inside and outside interfaces

vpp command learned in this exercise

	snat add interface
address [https://docs.fd.io/vpp/17.04/clicmd_src_plugins_snat.html#clicmd_snat_add_interface_address]

	set interface
snat [https://docs.fd.io/vpp/17.04/clicmd_src_plugins_snat.html#clicmd_set_interface_snat]

Topology

[image: SNAT Topology]
SNAT Topology

Initial state

Unlike previous exercises, for this one you want to start tabula rasa.

Note: You will lose all your existing config in your vpp instances!

To clear existing config from previous exercises run:

ps -ef | grep vpp | awk '{print $2}'| xargs sudo kill
sudo ip link del dev vpp1host
sudo ip link del dev vpp1vpp2

Action: Install vpp-plugins

Snat is supported by a plugin, so vpp-plugins need to be installed

sudo apt-get install vpp-plugins

Action: Create vpp instance

Create one vpp instance named vpp1.

Confirm snat plugin is present:

sudo vppctl -s /run/vpp/cli-vpp1.sock show plugins

Plugin path is: /usr/lib/vpp_plugins
Plugins loaded:
 1.ioam_plugin.so
 2.ila_plugin.so
 3.acl_plugin.so
 4.flowperpkt_plugin.so
 5.snat_plugin.so
 6.libsixrd_plugin.so
 7.lb_plugin.so

Action: Create veth interfaces

	Create a veth interface with one end named vpp1outside and the other
named vpp1outsidehost

	Assign IP address 10.10.1.1/24 to vpp1outsidehost

	Create a veth interface with one end named vpp1inside and the other
named vpp1insidehost

	Assign IP address 10.10.2.1/24 to vpp1outsidehost

Because we’d like to be able to route *via* our vpp instance to an
interface on the same host, we are going to put vpp1insidehost into a
network namespace

Create a new network namespace ‘inside’

sudo ip netns add inside

Move interface vpp1inside into the ‘inside’ namespace:

sudo ip link set dev vpp1insidehost up netns inside

Assign an ip address to vpp1insidehost

sudo ip netns exec inside ip addr add 10.10.2.1/24 dev vpp1insidehost

Create a route inside the netns:

sudo ip netns exec inside ip route add 10.10.1.0/24 via 10.10.2.2

Action: Configure vpp outside interface

	Create a vpp host interface connected to vpp1outside

	Assign ip address 10.10.1.2/24

	Create a vpp host interface connected to vpp1inside

	Assign ip address 10.10.2.2/24

Action: Configure snat

Configure snat to use the address of host-vpp1outside

sudo vppctl -s /run/vpp/cli-vpp1.sock snat add interface address host-vpp1outside

Configure snat inside and outside interfaces

sudo vppctl -s /run/vpp/cli-vpp1.sock set interface snat in host-vpp1inside out host-vpp1outside

Action: Prepare to Observe Snat

Observing snat in this configuration is interesting. To do so, vagrant
ssh a second time into your VM and run:

sudo tcpdump -s 0 -i vpp1outsidehost

Also enable tracing on vpp1

Action: Ping via snat

sudo ip netns exec inside ping -c 1 10.10.1.1

Action: Confirm snat

Examine the tcpdump output and vpp1 trace to confirm snat occurred.

Reference

Note

To Do

Index

 _images/VPP_performance_barchart_ndr_rates_l2-nic-to-VM.small.jpg
(Rt zaltosteamiaNicie el

[IMIX Gbps]

/ veshostuser

ovsopDKmostser
NCtow

wasoum

_images/VPP_sample_data_plane_management_agent_x260.jpg
oot 00000000 | [P

Honercont

Agert 000000000

_images/VPP_as_vSwitch_or_vRouter_supporting_remote_programmability_x260.jpg
[T
DaiaPiane || 000000000 VPP App.
Mansgement || —————__|
Agent 000000000

_images/VPP_custom_application_packet_processing_graph.280.jpg
‘Custom Application / Custom Packet
Processing Graph

_static/comment-bright.png

_images/Vpp_performance_barchart_ndr_rates_l2-nic-to-nic.jpg
(HDRstes for 2p105E L core 12 Mo NIS]

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/VPP_App_as_vSwitch_with_local_programmability_x260.jpg
Er=r=

000000000

000000000

e

_images/VPP_Packet_Processing_Layer_In_Network_Stack_Overview.jpg
Bare Metal/VM/Container

Data Plane Management Agent
Packet Processing

Network 10

_images/Switching_Topology.jpg
hostvpptout

vppthost
101011724

host-vpp2vppt

l00p0:

_images/VPP_App_as_a_vSwitch_x201.jpg
e

=l
=]

_images/VPP_and_ovsdpdk_tested_on_haswellx86_platform.jpg
skroutes

mroutes

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 What is FDIO?

 		
 Concepts

 		
 What is VPP?

 		
 Introduction

 		
 Why is it called vector processing?

 		
 Modular, Flexible, and Extensible

 		
 Feature Rich

 		
 Example Use Case: VPP as a vSwitch/vRouter

 		
 Local Programmability

 		
 Remote Programmability

 		
 Sample Data Plane Management Agent

 		
 Primary Characteristics Of VPP

 		
 Supported Architectures

 		
 Supported Packaging Models

 		
 Performance Expectations

 		
 Performance Metrics

 		
 NDR Rates

 		
 Setup

 		
 VPP Configuration Utility

 		
 Summary / Purpose of VPP Configuration Utility

 		
 Use

 		
 For Developers

 		
 Configuration Tool Main Menu

 		
 Command 1. Show System Information

 		
 Command 2. Dry Run

 		
 Command 3. Apply Full Configuration

 		
 Command 4. List/Install/Uninstall VPP

 		
 Command 5. Execute Basic tests

 		
 Tasks

 		
 Writing and pushing VPP Documentation

 		
 Getting and Building the VPP Documentation

 		
 Pushing a patch to the VPP Documentation

 		
 Installing VPP Binaries from Packages

 		
 Package Descriptions

 		
 Installing on Ubuntu

 		
 Installing on Centos

 		
 Installing on openSUSE

 		
 Downloading the jvpp jar

 		
 Guides

 		
 Progressive VPP Tutorial

 		
 Introduction

 		
 Exercise: Setting up your environment

 		
 Vagrant Set Up

 		
 Exercise: Install VPP

 		
 Exercise: VPP basics

 		
 VPP command learned in this exercise

 		
 Action: Remove dpdk plugin

 		
 Action: Run VPP

 		
 Action: Send commands to VPP using vppctl

 		
 Action: Start a VPP shell using vppctl

 		
 Exercise: Create an interface

 		
 Exercise: Connecting two vpp instances

 		
 Exercise: Routing

 		
 Exercise: Switching

 		
 Source NAT

 		
 Reference

_images/Create_Interface_Topology.jpg
hostvpptout
10.10.1.224

vppthost
101011724

_static/file.png

_images/SNAT_Topology.jpg
vazroLoL

spisinojddn

vavroror

IsoyapsIoLddn

_static/logo_fdio_header.png
o

The Universal Dataplane

_static/down.png

_images/Connecting_two_vpp_instances_with_memif.png
Jrun/vpp/memif-vpp1vpp2-routed master

v

B 23
g £
Eg Eg

nostuppout

0101224

vpptout

10.10.1.1724

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

