

FD.io VPP

This is beta VPP Documentation it is not meant to be complete or accurate yet!!!!

FD.io Vector Packet Processing (VPP) is a fast, scalable and multi-platform network stack.

FD.io VPP is, at it’s core, a scalable layer 2-4 network stack.
It supports integration into both Open Stack and Kubernetes environments.
It supports network management features including configuration, counters and sampling.
It supports extending with plugins, tracing and debugging.
It supports use cases such as vSwitch, vRouter, Gateways, Firewalls and Load Balancers, to name but a few.
Finally it is useful both a software development kit or an appliance out of the box.

	Overview
	What is VPP?

	Features

	Performance

	Architectures and Operating Systems

	Getting Started Guides
	Users

	Developers

	Use Cases
	FD.io VPP with Virtual Machines

	Using VPP as a Home Gateway

	vSwitch/vRouter

	Troubleshooting
	CPU Load/Usage

	User Guides
	Progressive VPP Tutorial

	API User Guides

	Reference
	Command Line Reference

	VPP with Containers

Overview

	What is VPP?

	Features

	Performance

	Architectures and Operating Systems

What is VPP?

FD.io’s Vector Packet Processing (VPP) technology is a Fast, Scalable and Deterministic,
Packet Processing stack that runs on commodity CPUs. It provides
out-of-the-box production quality switch/router functionality and much, much
more. FD.io VPP is at the same time, an Extensible and Modular Design and
Developer Friendly framework, capable of boot-strapping the development
of packet-processing applications. The benefits of FD.io VPP are its high
performance, proven technology, its modularity and flexibility, integrations and
rich feature set.

For more detailed information, see the following sections:

	Packet Processing

	Fast, Scalable and Deterministic

	Developer Friendly

	Extensible and Modular Design

What is vector packet processing?

As the name implies, FD.io VPP uses vector packet processing, as opposed to
scalar packet processing. A scalar packet processing stack simply processes one
packet at a time: an interrupt handling function takes a single packet from a
device rx ring, and processes it by traversing a set of functions: A calls B
calls C … return return return, then return from interrupt. For each packet, one
of three things happens: the path punts, drops, or rewrites and forwards the
packet.

Scalar packet processing is simple, but problematic in these ways:

	When the path length exceeds the size of the I-cache, thrashing
occurs. Each packet incurs an identical set of I-cache misses
The only solution: bigger caches.

	Deep call stack adds load-store-unit pressure since stack-locals
fall out of the L1 D-cache

	Aside from prefetching packet data - probably not in time - one
can’t address dependent read latency on table walks in a meaningful way

In contrast, vector packet processing constructs vectors of packets by
scraping up to 256 packets at a time from device rx rings, and
processes them using a directed graph of node. The graph scheduler
invokes one node dispatch function at a time, restricting stack depth
to a few stack frames.

This scheme fixes the I-cache thrashing problem.

Graph node dispatch functions iterate across up to 256 vector
elements. Processing the first packet in a vector warms up the
I-cache. The remaining packets all hit in the I-cache, reducing
I-cache miss stalls by up to two orders of magnitude.

Given a vector of packets, one can pipeline and prefetch to cover
dependent read latency on table data needed to process packets.

Vector packet processing techniques lead to a stable graph
dispatch circuit time equilibrium. For a given offered load, imagine
that the dispatch circuit time - and hence the vector size - converge
to certain values. Say that an operating system event such as a
clock-tick interrupt introduces a delay into the main dispatch loop.

The next rx vector will be larger. Larger vectors are processed more
efficiently: I-cache warmup costs are amortized over a larger number
of packets.

Rapidly, the rx vector size and the dispatch circuit time return to
the previous equilibrium values. Given a relatively stable offered
load, it’s an important advantage for the vector size to remain stable
in the face of exogenous events.

Packet Processing

	Layer 2 - 4 Network Stack

	Fast lookup tables for routes, bridge entries

	Arbitrary n-tuple classifiers

	Control Plane, Traffic Management and Overlays

	Linux [https://en.wikipedia.org/wiki/Linux] and FreeBSD [https://en.wikipedia.org/wiki/FreeBSD] support

	Wide support for standard Operating System Interfaces such as AF_Packet, Tun/Tap & Netmap.

	Wide network and cryptograhic hardware support with DPDK [https://www.dpdk.org/].

	Container and Virtualization support

	Para-virtualized intefaces; Vhost and Virtio

	Network Adapters over PCI passthrough

	Native container interfaces; MemIF

	Universal Data Plane: one code base, for many use cases

	Discrete appliances; such as Routers [https://en.wikipedia.org/wiki/Router_(computing)] and Switches [https://en.wikipedia.org/wiki/Network_switch].

	Cloud Infrastructure and Virtual Network Functions [https://en.wikipedia.org/wiki/Network_function_virtualization]

	Cloud Native Infrastructure [https://www.cncf.io/]

	The same binary package for all use cases.

	Out of the box production quality, with thanks to CSIT [https://wiki.fd.io/view/CSIT#Start_Here].

For more information, please see Features for the complete list.

Fast, Scalable and Deterministic

	Continuous integration and system testing [https://wiki.fd.io/view/CSIT#Start_Here]

	Including continuous & extensive, latency and throughput testing

	Layer 2 Cross Connect (L2XC), typically achieve 15+ Mpps per core.

	Tested to achieve zero packet drops and ~15µs latency.

	Performance scales linearly with core/thread count

	Supporting millions of concurrent lookup tables entries

Please see Performance for more information.

Developer Friendly

	Extensive runtime counters; throughput, intructions per cycle [https://en.wikipedia.org/wiki/Instructions_per_cycle], errors, events etc.

	Integrated pipeline tracing facilities

	Multi-language API bindings

	Integrated command line for debugging

	Fault-tolerant and upgradable

	Runs as a standard user-space process for fault tolerance, software crashes seldom require more than a process restart.

	Improved fault-tolerance and upgradability when compared to running similar packet processing in the kernel, software updates never require system reboots.

	Development expierence is easier compared to similar kernel code

	Hardware isolation and protection (iommu [https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit])

	Built for security

	Extensive white-box testing

	Image segment base address randomization

	Shared-memory segment base address randomization

	Stack bounds checking

	Static analysis with Coverity [https://en.wikipedia.org/wiki/Coverity]

Extensible and Modular Design

	Pluggable, easy to understand & extend

	Mature graph node architecture

	Full control to reorganize the pipeline

	Fast, plugins are equal citizens

Modular, Flexible, and Extensible

The FD.io VPP packet processing pipeline is decomposed into a ‘packet processing
graph’. This modular approach means that anyone can ‘plugin’ new graph
nodes. This makes VPP easily exensible and means that plugins can be
customized for specific purposes. VPP is also configurable through it’s
Low-Level API.

[image: Extensible, modular graph node architecture?]
Extensible and modular graph node architecture.

At runtime, the FD.io VPP platform assembles a vector of packets from RX rings,
typically up to 256 packets in a single vector. The packet processing graph is
then applied, node by node (including plugins) to the entire packet vector. The
received packets typically traverse the packet processing graph nodes in the
vector, when the network processing represented by each graph node is applied to
each packet in turn. Graph nodes are small and modular, and loosely
coupled. This makes it easy to introduce new graph nodes and rewire existing
graph nodes.

Plugins are shared libraries [https://en.wikipedia.org/wiki/Library_(computing)]
and are loaded at runtime by VPP. VPP find plugins by searching the plugin path
for libraries, and then dynamically loads each one in turn on startup.
A plugin can introduce new graph nodes or rearrange the packet processing graph.
You can build a plugin completely independently of the FD.io VPP source tree,
which means you can treat it as an independent component.

Features

	SDN & Cloud Integrations

	Control Plane

	Plugins

	Tunnels

	Layer 4

	Layer 3

	Traffic Management

	Layer 2

	Devices

Devices

Hardware

	DPDK [https://www.dpdk.org/]

	Network Interfaces [https://doc.dpdk.org/guides/nics/]

	Cryptographic Devices [https://doc.dpdk.org/guides/cryptodevs/]

	Open Data Plane [https://github.com/FDio/odp4vpp]

	Intel Ethernet Adaptive Virtual Function [https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ethernet-adaptive-virtual-function-hardware-spec.pdf]

Operating System

	Netmap [http://info.iet.unipi.it/~luigi/netmap/]

	af_packet [http://man7.org/linux/man-pages/man7/packet.7.html]

	Tap V2 (FastTap)

Virtualization:

	SSVM

	Vhost / VirtIO

Containers

	Vhost-user

	MemIF

SDN & Cloud Integrations

Traffic Management

IP Layer Input Checks

	Source Reverse Path Forwarding

	Time To Live expiration

	IP header checksum

	Layer 2 Length < IP Length

Classifiers

	Multiple million Classifiers - Arbitrary N-tuple

Policers

	Colour Aware & Token Bucket

	Rounding Closest/Up/Down

	Limits in PPS/KBPS

	Types:

	Single Rate Two Colour

	Single Rate Three Colour

	Dual Rate Three Colour

	Action Triggers

	Conform

	Exceed

	Violate

	Actions Type

	Drop

	Transmit

	Mark-and-transmit

Switched Port Analyzer (SPAN)
* mirror traffic to another switch port

ACLs

	Stateful

	Stateless

COP

MAC/IP Pairing

(security feature).

Layer 2

MAC Layer

	Ethernet

Discovery

	Cisco Discovery Protocol

	Link Layer Discovery Protocol (LLDP)

Link Layer Control Protocol

	Bit Index Explicit Replication – Link Layer Multi-cast forwarding.

	Link Layer Control (LLC) - multiplex protocols over the MAC layer.

	Spatial Reuse Protocol (SRP)

	High-Level Data Link Control (HDLC)

	Logical link control (LLC)

	Link Agg Control Protocol (Active/Active, Active/Passive) – 18.04

Virtual Private Networks

	MPLS

	MPLS-o-Ethernet – Deep label stacks supported

	Virtual Private LAN Service (VPLS)

	VLAN

	Q-in-Q

	Tag-rewrite (VTR) - push/pop/Translate (1:1,1:2, 2:1,2:2)

	Ethernet flow point Filtering

	Layer 2 Cross Connect

Bridging

	Bridge Domains

	MAC Learning (50k addresses)

	Split-horizon group support

	Flooding

ARP

	Proxy

	Termination

	Bidirectional Forwarding Detection

Integrated Routing and Bridging (IRB)

	Flexibility to both route and switch between groups of ports.

	Bridged Virtual Interface (BVI) Support, allows traffic switched traffic to be routed.

Layer 3

IP Layer

	ICMP

	IPv4

	IPv6

	IPSEC

	Link Local Addressing

MultiCast

	Multicast FiB

	IGMP

Virtual Routing and forwarding (VRF)

	VRF scaling, thousands of tables.

	Controlled cross-VRF lookups

Multi-path

	Equal Cost Multi Path (ECMP)

	Unequal Cost Multi Path (UCMP)

IPv4

	ARP

	ARP Proxy

	ARP Snooping

IPv6

	Neighbour discovery (ND)

	ND Proxy

	Router Advertisement

	Segment Routing

	Distributed Virtual Routing Resolution

Forwarding Information Base (FIB)

	Hierarchical FIB

	Memory efficient

	Multi-million entry scalable

	Lockless/concurrent updates

	Recursive lookups

	Next hop failure detection

	Shared FIB adjacencies

	Multicast support

	MPLS support

Layer 4

Tunnels

Layer 2

	L2TP

	PPP

	VLAN

Layer 3

	Mapping of Address and Port with Encapsulation (MAP-E)

	Lightweight IPv4 over IPv6

	An Extension to the Dual-Stack Lite Architecture

	GENEVE

	VXLAN

Segment Routing

	IPv6

	MPLS

Generic Routing Encapsulation (GRE)
* GRE over IPSEC
* GRE over IP
* MPLS
* NSH

Control Plane

	DHCP client/proxy

	DHCPv6 Proxy

Plugins

	iOAM

Performance

Overview

One of the benefits of FD.io VPP, is high performance on relatively low-power computing, this performance is based on the following features:

	A high-performance user-space network stack designed for commodity hardware.

	L2, L3 and L4 features and encapsulations.

	Optimized packet interfaces supporting a multitude of use cases.

	An integrated vhost-user backend for high speed VM-to-VM connectivity.

	An integrated memif container backend for high speed Container-to-Container connectivity.

	An integrated vhost based interface to punt packets to the Linux Kernel.

	The same optimized code-paths run execute on the host, and inside VMs and Linux containers.

	Leverages best-of-breed open source driver technology: DPDK [https://www.dpdk.org/].

	Tested at scale; linear core scaling, tested with millions of flows and mac addresses.

These features have been designed to take full advantage of common micro-processor optimization techniques, such as:

	Reducing cache and TLS misses by processing packets in vectors.

	Realizing IPC [https://en.wikipedia.org/wiki/Instructions_per_cycle] gains with vector instructions such as: SSE, AVX and NEON.

	Eliminating mode switching, context switches and blocking, to always be doing useful work.

	Cache-lined aliged buffers for cache and memory efficiency.

Packet Throughput Graphs

These are some of the packet throughput graphs for FD.io VPP 18.04 from the CSIT 18.04 benchmarking report [https://docs.fd.io/csit/rls1804/report/].

	L2 Ethernet Switching Throughput Tests

	NDR Performance Tests

	IPv4 Routed-Forwarding Performance Tests

	IPv6 Routed-Forwarding Performance Tests

Trending Throughput Graphs

These are some of the trending packet throughput graphs from the CSIT trending dashboard [https://docs.fd.io/csit/master/trending/introduction/index.html]. Please note that, performance in the trending graphs will change on a nightly basis in line with the software development cycle.

	L2 Ethernet Switching Performance Tests

	IPv4 Routed-Forwarding Performance Tests

	IPv6 Routed-Forwarding Performance Tests

For More information on CSIT

These are FD.io Continuous System Integration and Testing (CSIT)’s documentation links.

	CSIT Code Documentation [https://docs.fd.io/csit/master/doc/overview.html]

	CSIT Test Overview [https://docs.fd.io/csit/rls1804/report/introduction/overview.html]

	VPP Performance Dashboard [https://docs.fd.io/csit/master/trending/introduction/index.html]

L2 Ethernet Switching Throughput Tests

VPP NDR 64B packet throughput in 1 Core, 1 Thread setup, is presented in the graph below.

 NDR Performance Tests

NDR Performance Tests

This is a VPP NDR 64B packet throughput in 1 Core, 1 Thread setup, live graph of the NDR (No Drop Rate) L2 Performance Tests.

 IPv4 Routed-Forwarding Performance Tests

IPv4 Routed-Forwarding Performance Tests

VPP NDR 64B packet throughput in 1t1c setup (1thread, 1core) is presented in the graph below.

 IPv6 Routed-Forwarding Performance Tests

IPv6 Routed-Forwarding Performance Tests

VPP NDR 78B packet throughput in 1t1c setup (1 thread, 1 core) is presented in the graph below.

 L2 Ethernet Switching Performance Tests

L2 Ethernet Switching Performance Tests

This is a live graph of the 1 Core, 1 Thread, L2 Ethernet Switching Performance Tests Test on the x520 NIC.

 IPv4 Routed-Forwarding Performance Tests

IPv4 Routed-Forwarding Performance Tests

This is a live graph of the IPv4 Routed Forwarding Switching Performance Tests.

 IPv6 Routed-Forwarding Performance Tests

IPv6 Routed-Forwarding Performance Tests

VPP NDR 78B packet throughput in 1t1c setup (1 thread, 1 core) is presented in the trending graph below.

 Architectures and Operating Systems

Architectures and Operating Systems

Architectures

	
	The FD.io VPP platform supports:

	
	x86/64

	
	ARM

Operating Systems and Packaging

FD.io VPP supports package installation on the following
recent LTS operating systems releases:

	
	Operating Systems:

	
	Debian

	
	Ubuntu

	
	CentOS

	
	OpenSUSE

 Getting Started Guides

Getting Started Guides

	Users
	Installing VPP Binaries from Packages
	Package Descriptions
	Packages
	vpp

	vpp-lib

	vpp-plugins

	vpp-dbg

	vpp-dev

	vpp-api-java

	vpp-api-python

	vpp-api-lua

	Installing on Ubuntu
	Ubuntu 16.04 - Setup the fd.io Repository
	Update the OS

	Point to the Repository
	VPP latest Release

	VPP stable/1804 Branch

	VPP master Branch

	Install the Mandatory Packages

	Install the Optional Packages

	Uninstall the Packages

	Installing on Centos
	Setup the fd.io Repository (Centos 7.3)
	Update the OS

	Point to the Repository
	VPP latest Release

	VPP stable/1804 Branch

	VPP master Branch

	Install VPP RPMs

	Install the optional RPMs

	Uninstall the VPP RPMs

	Installing on openSUSE
	Installing
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Uninstall
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	For More Information

	FD.io VPP Configuration Utility
	Purpose of FD.io VPP Configuration Utility

	FD.io VPP Configuration Utility Guide
	Installing the FD.io VPP Configuration Utility
	Run as Root

	Using the FD.io VPP Configuration Utility
	FD.io VPP Configuration Tool Main Menu

	Target Files

	Configuring FD.io VPP with Default Values
	Command 1. Show System Information

	Before Configuration

	After Configuration
	Command 2. Dry Run

	Command 3. Apply Full Configuration

	Command 4. List/Install/Uninstall VPP

	Command 5. Execute Basic tests

	Set IPv4 Addresses

	Developers section to vpp-config
	Script: Clean the Environment

	Script: Copying Relevant Files

	Steps to Run the Utility

	Uploading to PyPi

	Writing VPP Documentation
	Building VPP Documents
	Overview
	Create a Virtual Environment using virtualenv
	Get the Documents

	Install the virtual environment

	Build the html files

	View the results

	Install Sphinx manually

	Using Read the Docs

	Pushing your changes to the VPP Docs Repository
	Overview

	Forking your own branch

	Creating a local repository

	Keeping your files in sync with the main repo

	Pushing to your branch

	Initiating a pull request (Code review)

	Additional Git commands

	reStructured Text Style Guide
	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Notes

	Code Blocks

	Labels, References

	External Links

	Images

	Including a file
	An XML File

	Raw HTML
	Raw HTML Example

	Markdown Style Guide
	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Code Blocks

	Labels, References

	External Links

	Images

	How to Report an Issue
	Reporting Bugs

	Data to include in bug reports
	Image version and operating environment

	“Show” command output

	Network Topology

	Packet Tracer Output

	Capturing post-mortem data
	Syslog Output

	Binary API Trace

	Core Files

	Developers
	Building in VPP
	Building Commands
	Building VPP Commands
	Set up Proxies

	Build VPP Dependencies

	Build VPP (Debug Mode)

	Build VPP (Release Version)

	Building Debian Packages
	For most operating systems (including Ubuntu)

	For CentOS

	Building on MacOS

	Useful Directories
	Useful Directories
	User Tools
	build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/

	VPP/bin
	build-root/install-vpp_debug-native/vpp/bin/

	Devbind
	dpdk-devbind.py

	vNet
	src/scripts/vnet/

	src/vnet/

	src/vnet/devices/

	Overview
	Software Architecture
	Implemetation taxonomy

	Vppinfra
	Vectors

	Bitmaps

	Pools

	Hashes

	Format

	Unformat

	Vppinfra errors and warnings

	Serialization

	Event-logger, graphical event log viewer

	G2 graphical event viewer

	VLIB
	Init function discovery

	Node Graph Initialization

	Graph node dispatcher

	Process / thread model

	Process events

	Buffers

	Shared-memory message API

	Plug-ins

	Debug CLI

	Packet tracer

	Vnet
	Effective graph dispatch function coding

	Single/dual loops

	Feature Arcs
	Adding a feature to an existing feature arc

	Creating a feature arc

	Enabling / Disabling features

	Related “show” commands

	Table of Feature Arcs

	Bounded-index Extensible Hashing
	Discussion of the algorithm

	Bihash Cookbook
	Using current (key,value) template instance types

	Initializing a bihash table

	Add or delete a key/value pair

	Simple search

	Bihash vector processing

	Walking a bihash table

	Creating a new template instance

 Users

Users

	Installing VPP Binaries from Packages
	Package Descriptions
	Packages
	vpp

	vpp-lib

	vpp-plugins

	vpp-dbg

	vpp-dev

	vpp-api-java

	vpp-api-python

	vpp-api-lua

	Installing on Ubuntu
	Ubuntu 16.04 - Setup the fd.io Repository
	Update the OS

	Point to the Repository
	VPP latest Release

	VPP stable/1804 Branch

	VPP master Branch

	Install the Mandatory Packages

	Install the Optional Packages

	Uninstall the Packages

	Installing on Centos
	Setup the fd.io Repository (Centos 7.3)
	Update the OS

	Point to the Repository
	VPP latest Release

	VPP stable/1804 Branch

	VPP master Branch

	Install VPP RPMs

	Install the optional RPMs

	Uninstall the VPP RPMs

	Installing on openSUSE
	Installing
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Uninstall
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	For More Information

	FD.io VPP Configuration Utility
	Purpose of FD.io VPP Configuration Utility

	FD.io VPP Configuration Utility Guide
	Installing the FD.io VPP Configuration Utility
	Run as Root

	Using the FD.io VPP Configuration Utility
	FD.io VPP Configuration Tool Main Menu

	Target Files

	Configuring FD.io VPP with Default Values
	Command 1. Show System Information

	Before Configuration

	After Configuration
	Command 2. Dry Run

	Command 3. Apply Full Configuration

	Command 4. List/Install/Uninstall VPP

	Command 5. Execute Basic tests

	Set IPv4 Addresses

	Developers section to vpp-config
	Script: Clean the Environment

	Script: Copying Relevant Files

	Steps to Run the Utility

	Uploading to PyPi

	Writing VPP Documentation
	Building VPP Documents
	Overview
	Create a Virtual Environment using virtualenv
	Get the Documents

	Install the virtual environment

	Build the html files

	View the results

	Install Sphinx manually

	Using Read the Docs

	Pushing your changes to the VPP Docs Repository
	Overview

	Forking your own branch

	Creating a local repository

	Keeping your files in sync with the main repo

	Pushing to your branch

	Initiating a pull request (Code review)

	Additional Git commands

	reStructured Text Style Guide
	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Notes

	Code Blocks

	Labels, References

	External Links

	Images

	Including a file
	An XML File

	Raw HTML
	Raw HTML Example

	Markdown Style Guide
	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Code Blocks

	Labels, References

	External Links

	Images

	How to Report an Issue
	Reporting Bugs

	Data to include in bug reports
	Image version and operating environment

	“Show” command output

	Network Topology

	Packet Tracer Output

	Capturing post-mortem data
	Syslog Output

	Binary API Trace

	Core Files

 Installing VPP Binaries from Packages

Installing VPP Binaries from Packages

If you are simply using vpp, it can be convenient to simply install the packages. This guide will describe how pull and install the VPP packages.

Package Descriptions

The following is a brief description of the packages to be installed with VPP.

	Packages
	vpp

	vpp-lib

	vpp-plugins

	vpp-dbg

	vpp-dev

	vpp-api-java

	vpp-api-python

	vpp-api-lua

Installing on Ubuntu

The following are instructions on how to install VPP on Ubuntu.

	Ubuntu 16.04 - Setup the fd.io Repository
	Update the OS

	Point to the Repository
	VPP latest Release

	VPP stable/1804 Branch

	VPP master Branch

	Install the Mandatory Packages

	Install the Optional Packages

	Uninstall the Packages

Installing on Centos

The following are instructions on how to install VPP on Centos.

	Setup the fd.io Repository (Centos 7.3)
	Update the OS

	Point to the Repository
	VPP latest Release

	VPP stable/1804 Branch

	VPP master Branch

	Install VPP RPMs

	Install the optional RPMs

	Uninstall the VPP RPMs

Installing on openSUSE

The following are instructions on how to install VPP on openSUSE.

	Installing
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	Uninstall
	openSUSE Tumbleweed (rolling release)

	openSUSE Leap 42.3

	For More Information

 Packages

Packages

vpp

Vector Packet Processing executables

	vpp - the vector packet engine

	vpp_api_test - vector packet engine API test tool

	vpp_json_test - vector packet engine JSON test tool

vpp-lib

Vector Packet Processing runtime libraries. This package contains the VPP shared libraries, including:

	vppinfra - Foundation library supporting vectors, hashes, bitmaps, pools, and string formatting.

	svm - vm library

	vlib - vector processing library

	vlib-api - binary API library

	vnet - network stack library

vpp-plugins

Vector Packet Processing plugin modules

	acl

	dpdk

	flowprobe

	gtpu

	ixge

	kubeproxy

	l2e

	lb

	memif

	nat

	pppoe

	sixrd

	stn

vpp-dbg

Vector Packet Processing debug symbols

vpp-dev

Vector Packet Processing development support. This package contains
development support files for the VPP libraries

vpp-api-java

JAVA binding for the VPP Binary API.

vpp-api-python

Python binding for the VPP Binary API.

vpp-api-lua

Lua binding for the VPP Binary API.

 Ubuntu 16.04 - Setup the fd.io Repository

Ubuntu 16.04 - Setup the fd.io Repository

From the following choose one of the releases to install.

Update the OS

It is probably a good idea to update and upgrade the OS before starting

apt-get update

Point to the Repository

Create a file “/etc/apt/sources.list.d/99fd.io.list” with the contents that point to
the version needed. The contents needed are shown below.

VPP latest Release

Create the file /etc/apt/sources.list.d/99fd.io.list with contents:

deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./

VPP stable/1804 Branch

Create the file /etc/apt/sources.list.d/99fd.io.list with contents:

deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.stable.1804.ubuntu.xenial.main/ ./

VPP master Branch

Create the file /etc/apt/sources.list.d/99fd.io.list with contents:

deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.master.ubuntu.xenial.main/ ./

Install the Mandatory Packages

sudo apt-get update
sudo apt-get install vpp vpp-lib vpp-plugin

Install the Optional Packages

sudo apt-get install vpp-dbg vpp-dev vpp-api-java vpp-api-python vpp-api-lua

Uninstall the Packages

sudo apt-get remove --purge vpp*

 Setup the fd.io Repository (Centos 7.3)

Setup the fd.io Repository (Centos 7.3)

From the following choose one of the releases to install.

Update the OS

It is probably a good idea to update and upgrade the OS before starting

yum update

Point to the Repository

Create a file “/etc/yum.repos.d/fdio-release.repo” with the contents that point to
the version needed. The contents needed are shown below.

VPP latest Release

Create the file “/etc/yum.repos.d/fdio-release.repo”.

[fdio-release]
name=fd.io release branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.centos7/
enabled=1
gpgcheck=0

VPP stable/1804 Branch

Create the file “/etc/yum.repos.d/fdio-release.repo”.

[fdio-stable-1804]
name=fd.io stable/1804 branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.stable.1804.centos7/
enabled=1
gpgcheck=0

VPP master Branch

Create the file “/etc/yum.repos.d/fdio-release.repo”.

[fdio-master]
name=fd.io master branch latest merge
baseurl=https://nexus.fd.io/content/repositories/fd.io.master.centos7/
enabled=1
gpgcheck=0

Install VPP RPMs

sudo yum install vpp

Install the optional RPMs

sudo yum install vpp-plugins vpp-devel vpp-api-python vpp-api-lua vpp-api-java

Uninstall the VPP RPMs

sudo yum autoremove vpp*

 Installing

Installing

Top install VPP on openSUSE first pick the following release and execute the appropriate commands.

openSUSE Tumbleweed (rolling release)

sudo zypper install vpp vpp-plugins

openSUSE Leap 42.3

sudo zypper addrepo --name network https://download.opensuse.org/repositories/network/openSUSE_Leap_42.3/network.repo
sudo zypper install vpp vpp-plugins

Uninstall

sudo zypper remove -u vpp vpp-plugins

openSUSE Tumbleweed (rolling release)

sudo zypper remove -u vpp vpp-plugins

openSUSE Leap 42.3

sudo zypper remove -u vpp vpp-plugins
sudo zypper removerepo network

For More Information

For more information on VPP with openSUSE, please look at the following post.

	https://www.suse.com/communities/blog/vector-packet-processing-vpp-opensuse/

 FD.io VPP Configuration Utility

FD.io VPP Configuration Utility

Purpose of FD.io VPP Configuration Utility

The FD.io VPP Configuration Utility, or vpp-config, allows the user to configure FD.io VPP in a simple and safe manner.
The utility takes input from the user and then modifies the key configuration files.
The user can then examine these files to be sure they are correct and then actually
apply the configuration. The utility also includes an installation utility and some basic tests.

FD.io VPP Configuration Utility Guide

The following guide provides instructions on how to install, use, and develop vpp-config.

	Installing the FD.io VPP Configuration Utility

	Using the FD.io VPP Configuration Utility

	Developers section to vpp-config

 Installing the FD.io VPP Configuration Utility

Installing the FD.io VPP Configuration Utility

The installation and executing of the FD.io VPP Configuration Utility, or vpp-config, is
simple. First install the python pip module [https://pip.pypa.io/en/stable/installing/]. Then using pip,

Run as Root

Run the terminal as root

$ sudo -H bash

Afterwards, install the vpp-config utility through the pip command.

pip install vpp-config

 Using the FD.io VPP Configuration Utility

Using the FD.io VPP Configuration Utility

vpp-config utility provides the user with a menu that offers a variety of useful features used
to configure the devices which will be used by VPP, hugepages, and allowing VPP to be the only
process running on its specified CPU.

FD.io VPP Configuration Tool Main Menu

It is recommended that these menu options are executed in order.

	Show basic system information

	Dry Run

	Full Configuration

	List/Install/Uninstall VPP

	Execute some basic tests

Target Files

The following files will be modified by VPP config:
.. code-block:: console

/etc/vpp/startup.conf
/etc/sysctl.d/80-vpp.conf
/etc/default/grub

Once vpp-config is installed simply type:

vpp-config

Welcome to the VPP system configuration utility

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command:
and answer the questions. If you are not sure what to answer choose the
default.

Configuring FD.io VPP with Default Values

If you do not choose to modify the default for any of the questions prompted by vpp-config,
you may press the ENTER key to select the default options:

	Questions that ask [Y/n], the capital letter Y is the default answer.

	Numbers have their default within brackets, such as in [1024], the 1024 is the default.

Command 1. Show System Information

Before Configuration

When the utility is first started we can show the basic system
information.

vpp-config

Welcome to the VPP system configuration utility

These are the files we will modify:
 /etc/vpp/startup.conf
 /etc/sysctl.d/80-vpp.conf
 /etc/default/grub

Before we change them, we'll create working copies in /usr/local/vpp/vpp-config/dryrun
Please inspect them carefully before applying the actual configuration (option 3)!

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1

==============================
NODE: DUT1

CPU:
 Model name: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
 CPU(s): 32
 Thread(s) per core: 2
 Core(s) per socket: 8
 Socket(s): 2
 NUMA node0 CPU(s): 0-7,16-23
 NUMA node1 CPU(s): 8-15,24-31
 CPU max MHz: 3600.0000
 CPU min MHz: 1200.0000
 SMT: Enabled

VPP Threads: (Name: Cpu Number)

Grub Command Line:
 Current: BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro
 Configured: GRUB_CMDLINE_LINUX_DEFAULT=""

Huge Pages:
 Total System Memory : 65863484 kB
 Total Free Memory : 56862700 kB
 Actual Huge Page Total : 1024
 Configured Huge Page Total : 1024
 Huge Pages Free : 1024
 Huge Page Size : 2048 kB

Devices:

Devices with link up (can not be used with VPP):
0000:08:00.0 enp8s0f0 I350 Gigabit Network Connection

Devices bound to kernel drivers:
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

No devices bound to DPDK drivers

VPP Service Status:
 Not Installed

==============================

After Configuration

When we show the system information after the system is configured
notice that the VPP workers and the VPP main core is on the correct Numa
Node. Notice also that VPP is running and the interfaces are shown.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1
 ==============================
 NODE: DUT1

 CPU:
 Model name: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
 CPU(s): 72
 Thread(s) per core: 2
 Core(s) per socket: 18
 Socket(s): 2
 NUMA node0 CPU(s): 0-17,36-53
 NUMA node1 CPU(s): 18-35,54-71
 CPU max MHz: 3700.0000
 CPU min MHz: 1000.0000
 SMT: Enabled

 VPP Threads: (Name: Cpu Number)
 vpp_main : 0
 vpp_stats : 0

 Grub Command Line:
 Current: BOOT_IMAGE=/vmlinuz-3.10.0-693.21.1.el7.x86_64 root=UUID=cc995b4c-3c20-4ca5-ae26-d6ed364af63f ro crashkernel=auto biosdevname=0 net.ifnames=0 rhgb quiet intel_iommu=on
 Configured: GRUB_CMDLINE_LINUX="crashkernel=auto biosdevname=0 net.ifnames=0 rhgb quiet intel_iommu=on"

 Huge Pages:
 Total System Memory : 196583908 kB
 Total Free Memory : 113683588 kB
 Actual Huge Page Total : 4096
 Configured Huge Page Total : 8192
 Huge Pages Free : 3960
 Huge Page Size : 2048 kB

 Devices:

 Devices with link up (can not be used with VPP):
 0000:3d:00.0 eth2 Ethernet Connection X722 for 10GBASE-T

 Devices bound to kernel drivers:
 0000:3d:00.1 eth3 Ethernet Connection X722 for 10GBASE-T
 0000:18:02.1 eth7 Ethernet Virtual Function 700 Series
 0000:18:02.0 eth6 Ethernet Virtual Function 700 Series
 0000:18:02.3 eth9 Ethernet Virtual Function 700 Series
 0000:18:02.2 eth8 Ethernet Virtual Function 700 Series
 0000:18:00.0 eth0 Ethernet Controller XXV710 for 25GbE SFP28
 0000:86:00.0 eth4 Ethernet Controller XXV710 for 25GbE SFP28
 0000:86:00.1 eth5 Ethernet Controller XXV710 for 25GbE SFP28

 No devices bound to DPDK drivers

 VPP Service Status:
 activating (auto

 ==============================

Command 2. Dry Run

With VPP installed we can now execute a configuration dry run. This
option will create the configuration files and put them in a dryrun
directory. This directory is located for Ubuntu in
/usr/local/vpp/vpp-config/dryrun and for Centos in
/usr/vpp/vpp-config/dryrun. These files should be examined to be sure
that they are valid before actually applying the configuration with
option 3.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 2

These device(s) are currently NOT being used by VPP or the OS.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to give any of these devices back to the OS [Y/n]? y
Would you like to use device 0000:86:00.0 for the OS [y/N]? y
Would you like to use device 0000:86:00.1 for the OS [y/N]? y

These devices have kernel interfaces, but appear to be safe to use with VPP.

PCI ID Kernel Interface(s) Description
--
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.0 enp134s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 enp134s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to use any of these device(s) for VPP [y/N]? y
Would you like to use device 0000:90:00.0 for VPP [y/N]?
Would you like to use device 0000:8f:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.1 for VPP [y/N]?
Would you like to use device 0000:08:00.1 for VPP [y/N]?
Would you like to use device 0000:02:00.0 for VPP [y/N]?
Would you like to use device 0000:02:00.1 for VPP [y/N]?
Would you like to use device 0000:86:00.0 for VPP [y/N]? y
Would you like to use device 0000:86:00.1 for VPP [y/N]? y

These device(s) will be used by VPP.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to remove any of these device(s) [y/N]?

These device(s) will be used by VPP, please rerun this option if this is incorrect.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Your system has 32 core(s) and 2 Numa Nodes.
To begin, we suggest not reserving any cores for VPP or other processes.
Then to improve performance try reserving cores as needed.

How many core(s) do you want to reserve for processes other than VPP? [0-16][0]?
How many core(s) shall we reserve for VPP workers[0-4][0]? 2
Should we reserve 1 core for the VPP Main thread? [y/N]? y

How many active-open / tcp client sessions are expected [0-10000000][0]?
How many passive-open / tcp server sessions are expected [0-10000000][0]?

There currently 1024 2048 kB huge pages free.
Do you want to reconfigure the number of huge pages [y/N]? y

There currently a total of 1024 huge pages.
How many huge pages do you want [1024 - 19414][1024]? 8192

Command 3. Apply Full Configuration

After the configuration files have been examined we can apply the
configuration with option 3. Notice the default is NOT to change the
grub command line. If the option to change the grub command line is
selected a reboot will be required.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 3

We are now going to configure your system(s).

Are you sure you want to do this [Y/n]? y
These are the changes we will apply to
the huge page file (/etc/sysctl.d/80-vpp.conf).

1,2d0
< vm.nr_hugepages=1024
4,7c2,3
< vm.max_map_count=3096

> vm.nr_hugepages=8192
> vm.max_map_count=17408
8a5
> kernel.shmmax=17179869184
10,15d6
< kernel.shmmax=2147483648

Are you sure you want to apply these changes [Y/n]?
These are the changes we will apply to
the VPP startup file (/etc/vpp/startup.conf).

>
> main-core 8
> corelist-workers 9-10
>
> scheduler-policy fifo
> scheduler-priority 50
>
67,68c56,66
< # dpdk {

> dpdk {
>
> dev 0000:86:00.0 {
> num-rx-queues 2
> }
> dev 0000:86:00.1 {
> num-rx-queues 2
> }
> num-mbufs 25600
>
124c122
< # }

> }

Are you sure you want to apply these changes [Y/n]?

The configured grub cmdline looks like this:
GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=8,9-10 nohz_full=8,9-10 rcu_nocbs=8,9-10"

The current boot cmdline looks like this:
BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro

Do you want to keep the current boot cmdline [Y/n]?

Command 4. List/Install/Uninstall VPP

Notice when the basic system information was shown, VPP was not
installed.

VPP Service Status:
 Not Installed

==============================

We can now install FD.io VPP with option 4

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 4

There are no VPP packages on node localhost.
Do you want to install VPP [Y/n]? y
INFO:root: Local Command: ls /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: Local Command: rm /etc/apt/sources.list.d/99fd.io.list
INFO:root: Local Command: echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./
" | sudo tee /etc/apt/sources.list.d/99fd.io.list
INFO:root: deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./
.......

Command 5. Execute Basic tests

Set IPv4 Addresses

Once VPP is configured we can add some ip addresses to the configured
interfaces. Once this is done you should be able to ping the configured
addresses and VPP is ready to use. After this option, is run a script is
created in /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up for
Ubuntu and /usr/vpp/vpp-config/scripts/set_int_ipv4_and_up *for **Centos*.
This script can be used to configure the ip addresses in the future.

vpp-config

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 5

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 Not Set dn
TenGigabitEthernet86/0/1 Not Set dn

Would you like to keep this configuration [Y/n]? n
Would you like add address to interface TenGigabitEthernet86/0/0 [Y/n]?
Please enter the IPv4 Address [n.n.n.n/n]: 30.0.0.2/24
Would you like add address to interface TenGigabitEthernet86/0/1 [Y/n]? y
Please enter the IPv4 Address [n.n.n.n/n]: 40.0.0.2/24

A script as been created at /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up
This script can be run using the following:
vppctl exec /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 30.0.0.2/24 up
TenGigabitEthernet86/0/1 40.0.0.2/24 up

Would you like to keep this configuration [Y/n]?

 Developers section to vpp-config

Developers section to vpp-config

Modifying the code is reasonable simple. Edit and debug the code from
the root directory. In order to do this, we need a script that will copy
or data files to the proper place. This is where they end up with pip
install.

On Ubuntu, the root directory is found by:

cd /usr/local/vpp/vpp-config

On Centos, the root directory is found by:

cd /usr/vpp/vpp-config

Script: Clean the Environment

Run this script to clean the environment.

./scripts/clean.sh

Note

This allows the developer to start from scratch.

Script: Copying Relevant Files

Run this script to copy the relevant files correctly:

./scripts/cp-data.sh

Steps to Run the Utility

These are the steps to run the utility in this environment.
The scripts are meant to be run from the root directory.

./scripts/clean.sh
./scripts/cp-data.sh
./vpp_config.py

When the utility is installed with pip the wrapper scripts/vpp-config is
written to /usr/local/bin. However, the starting point when debugging
this script locally is

 # ./vpp_config.py

Run the utility by executing (from the root directory)

./vpp_config.py

The start point in the code is in vpp_config.py. Most of the work is
done in the files in ./vpplib

Uploading to PyPi

To upload this utility to PyPi, simply do the following:

Note

Currently, I have my own account. When we want everyone to contribute we will need to change that.

$ sudo -H bash
cd vpp_config
python setup.py sdist bdist_wheel
twine upload dist/*

 Writing VPP Documentation

Writing VPP Documentation

	Building VPP Documents
	Overview
	Create a Virtual Environment using virtualenv
	Get the Documents

	Install the virtual environment

	Build the html files

	View the results

	Install Sphinx manually

	Using Read the Docs

	Pushing your changes to the VPP Docs Repository
	Overview

	Forking your own branch

	Creating a local repository

	Keeping your files in sync with the main repo

	Pushing to your branch

	Initiating a pull request (Code review)

	Additional Git commands

	reStructured Text Style Guide
	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Notes

	Code Blocks

	Labels, References

	External Links

	Images

	Including a file
	An XML File

	Raw HTML
	Raw HTML Example

	Markdown Style Guide
	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Code Blocks

	Labels, References

	External Links

	Images

 Building VPP Documents

Building VPP Documents

Overview

These instructions show how the VPP documentation sources are built.

FD.io VPP Documentation uses reStructuredText [http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html] (rst) files, which are used by Sphinx [http://www.sphinx-doc.org/en/master/].
We will also cover how to view your build on Read the Docs in Using Read the Docs.

To build your files, you can either Create a Virtual Environment using virtualenv, which installs all the required applications for you, or you can Install Sphinx manually.

Create a Virtual Environment using virtualenv

For more information on how to use the Python virtual environment check out
Installing packages using pip and virtualenv [https://packaging.python.org/guides/installing-using-pip-and-virtualenv/].

Get the Documents

For example start with a clone of the vpp-docs.

$ git clone https://github.com/fdioDocs/vpp-docs
$ cd vpp-docs/docs

Install the virtual environment

In your vpp-docs directory, run:

$ python -m pip install --user virtualenv
$ python -m virtualenv env
$ source env/bin/activate
$ pip install -r etc/requirements.txt

Which installs all the required applications into it’s own, isolated, virtual environment, so as to not
interfere with other builds that may use different versions of software.

Build the html files

Be sure you are in your vpp-docs/docs directory, since that is where Sphinx will look for your conf.py
file, and build the .rst files into an index.html file:

$ make html

View the results

If there are no errors during the build process, you should now have an index.html file in your

vpp-docs/docs/_build/html directory, which you can then view in your browser.

[image: Figure: My directory containing the index.html file]

Whenever you make changes to your .rst files that you want to see, repeat this build process.

Note

To exit from the virtual environment execute:

$ deactivate

Install Sphinx manually

Skip this step if you created a virtualenv in the previous step. If you dont want to create a virtualenv, you should install Sphinx here [http://www.sphinx-doc.org/en/master/usage/installation.html], and follow their getting started guide [http://www.sphinx-doc.org/en/master/usage/quickstart.html].

Building these files will generate an index.html file, which you can then view in your browser to verify and see your file changes.

To build your files, make sure you’re in your vpp-docs/docs directory, where your conf.py file is located, and run:

$ make html

If there are no errors during the build process, you should now have an index.html file in your

vpp-docs/docs/_build/html directory, which you can then view in your browser.

[image: ../../../_images/htmlBuild.png]

Whenever you make changes to your .rst files that you want to see, repeat this build process.

Using Read the Docs

Read the Docs [https://readthedocs.org/] is a website that “simplifies software documentation by automating building, versioning, and hosting of your docs for you”. Essentially, it accesses your Github repo to generate the index.html file, and then displays it on its own Read the Docs webpage so others can view your documentation.

Create an account on Read the Docs if you haven’t already.

Go to your dashboard [https://readthedocs.org/dashboard/] , and click on “Import a Project”.

[image: ../../../_images/importReadDocs.png]
This will bring you to a page where you can choose to import a repo from your Github account (only if you’ve linked your Github account to your Read the Docs account), or to import a repo manually. In this example, we’ll do it manually. Click “Import Manually”.

This will bring you to a page that asks for your repo details. Set “Name” to your forked repo name, or whatever you want. Set “Repository URL” to the URL of your forked repo (https://github.com/YOURUSERNAME/vpp-docs). “Repository type” should already be selected to “Git”. Then click “Next”.

[image: ../../../_images/importRTDManually.png]

This will bring you to a project page of your repo on Read the Docs. You can confirm it’s the correct repo by checking on the right side of the page the Repository URL.

Then click on “Build Version”.

[image: ../../../_images/buildVerRTD.png]

Which takes you to another page showing your recent builds.

Then click on “Build Version:”. This should “Trigger” a build. After about a minute or so you can refresh the page and see that your build “Passed”.

[image: ../../../_images/passedBuild.png]

Now on your builds page from the previous image, you can click “View Docs” at the top-right, which will take you a readthedocs.io page of your generated build!

[image: ../../../_images/rtdWebpage.png]

 Pushing your changes to the VPP Docs Repository

Pushing your changes to the VPP Docs Repository

Overview

This section will cover how to fork your own branch of the fdioDocs/vpp-docs [https://github.com/fdioDocs/vpp-docs] repository, clone that repo locally to your computer, make changes to it, and how to issue a pull request when you want your changes to be reflected on the main repo.

Forking your own branch

In your browser, navigate to the repo you want to branch off of. In this case, the fdioDocs/vpp-docs [https://github.com/fdioDocs/vpp-docs] repo. At the top right of the page you should see this:

[image: Figure: Repository options on Github]

Click on “Fork”, and then a pop-up should appear where you should then click your Github username. Once this is done, it should automatically take you to the Github page where your new branch is located, just like in the image below.

[image: Figure: Your own branch of the main repo on Github]

Now your own branch can be cloned to your computer using the URL (https://github.com/YOURUSERNAME/vpp-docs) of the Github page where your branch is located.

Creating a local repository

Now that you have your own branch of the main repository on Github, you can store it locally on your computer. In your shell, navigate to the directory where you want to store your branch/repo. Then execute:

$ git clone https://github.com/YOURUSERNAME/vpp-docs

This will create a directory on your computer named vpp-docs, the name of the repo.

Now that your branch is on your computer, you can modify and build files however you wish.

If you are not on the master branch, move to it.

$ git checkout master

Keeping your files in sync with the main repo

The following talks about remote branches, but keep in mind that there are currently two branches, your local “master” branch (on your computer), and your remote “origin or origin/master” branch (the one you created using “Fork” on the Github website).

You can view your remote repositories with:

$ git remote -v

At this point, you may only see the remote branch that you cloned from.

Macintosh:docs Andrew$ git remote -v
origin https://github.com/a-olechtchouk/vpp-docs (fetch)
origin https://github.com/a-olechtchouk/vpp-docs (push)

Now you want to create a new remote repository of the main vpp-docs repo (naming it upstream).

$ git remote add upstream https://github.com/fdioDocs/vpp-docs

You can verify that you have added a remote repo using the previous git remote -v command.

$ git remote -v
origin https://github.com/a-olechtchouk/vpp-docs (fetch)
origin https://github.com/a-olechtchouk/vpp-docs (push)
upstream https://github.com/fdioDocs/vpp-docs (fetch)
upstream https://github.com/fdioDocs/vpp-docs (push)

If there have been any changes to files in the main repo (hopefully not the same files you were working on!), you want to make sure your local branch is in sync with them.

To do so, fetch any changes that the main repo has made, and then merge them into your local master branch using:

$ git fetch upstream
$ git merge upstream/master

Note

This is optional, so don’t do these commands if you just want one local branch!!!

You may want to have multiple branches, where each branch has its own different features, allowing you to have multiple pull requests out at a time. To create a new local branch:

 $ git checkout -b cleanup-01
 $ git branch
 * cleanup-01
 master
 overview

Now you can redo the previous steps for "Keeping your files in sync with the main repo" for your newly created local branch, and then depending on which branch you want to send out a pull reqest for, proceed below.

Pushing to your branch

Now that your files are in sync, you want to add modified files, commit, and push them from your local branch to your personal remote branch (not the main fdioDocs repo).

To check the status of your files, run:

$ git status

In the output example below, I deleted gettingsources.rst, made changes to index.rst and pushingapatch.rst, and have created a new file called buildingrst.rst.

Macintosh:docs Andrew$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: tasks/writingdocs/gettingsources.rst

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: tasks/writingdocs/index.rst
 modified: tasks/writingdocs/pushingapatch.rst

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 tasks/writingdocs/buildingrst.rst

To add files (use git add -A to add all modified files):

$ git add FILENAME1 FILENAME2

Commit and push using:

$ git commit -m 'A descriptive commit message for two files.'

Push your changes for the branch where your changes were made

$ git push origin <branch name>

Here, your personal remote branch is “origin” and your local branch is “master”.

Note

Using git commit after adding your files saves a “Snapshot” of them, so it’s very hard to lose your work if you commit often.

Initiating a pull request (Code review)

Once you’ve pushed your changes to your remote branch, go to your remote branch on Github (https://github.com/YOURUSERNAME/vpp-docs), and click on “New pull request”.

[image: Figure: Your own branch of the main repo on Github]

This will bring you to a “Comparing changes” page. Click “Create new pull request”.

[image: ../../../_images/createNewPullReq.png]

Which will open up text fields to add information to your pull request.

[image: ../../../_images/examplePullReq.png]
Then finally click “Create pull request” to complete the pull request.

Your documents will be reviewed. To this same branch make the changes requested from the review and then push your new changes. There is no need to create another pull request.

$ git commit -m 'A descriptive commit message for the new changes'
$ git push origin <branch name>

Additional Git commands

You may find some of these Git commands useful:

Use git diff to quickly show the file changes and repo differences of your commits.

Use git rm FILENAME to stop tracking a file and to remove it from your remote branch and local directory. Use flag -r to remove folders/directories. E.g (git rm -r oldfolder)

 reStructured Text Style Guide

reStructured Text Style Guide

Most of the these documents are written ins reStructured Text (rst). This chapter describes some of
the Sphinx Markup Constructs used in these documents. The Sphinx style guide can be found at:
Sphinx Style Guide [http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html]
For a more detailed list of Sphinx Markup Constructs please refer to:
Sphinx Markup Constructs [http://www.sphinx-doc.org/en/stable/markup/index.html]

This document is also an example of a directory structure for a document that spans mutliple pages.
Notice we have the file index.rst and the then documents that are referenced in index.rst. The
referenced documents are shown at the bottom of this page.

A label is shown at the top of this page. Then the first construct describes a the document title
FD.io Style Guide. Text usually follows under each title or heading.

A Table of Contents structure is shown below. Using toctree in this way will show the headings
in a nicely in the generated documents.

	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Notes

	Code Blocks

	Labels, References

	External Links

	Images

	Including a file
	An XML File

	Raw HTML
	Raw HTML Example

 Heading 1

Heading 1

This is the top heading level. More levels are shown below.

Heading 2

Heading 3

Heading 4

Heading 5

 Bullets, Bold and Italics

Bullets, Bold and Italics

Bold text can be show with Bold Text, Italics with Italic text. Bullets like so:

	Bullet 1

	Bullet 2

Notes

A note can be used to describe something not in the normal flow of the paragragh. This
is an example of a note.

Note

Using git commit after adding your files saves a “Snapshot” of them, so it’s very hard
to lose your work if you commit often.

Code Blocks

This paragraph describes how to do Console Commands. When showing VPP commands it is reccomended
that the command be executed from the linux console as shown. The Highlighting in the final documents
shows up nicely this way.

$ sudo bash
vppctl show interface
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213
 rx bytes 9928352943
 tx packets 50384
 tx bytes 3329279
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384
 rx bytes 3329279
 tx packets 6569213
 tx bytes 9928352943
 drops 1498
local0 0 down
#

The code-block construct is also used for code samples. The following shows how to include a block of
“C” code.

#include <vlib/unix/unix.h>
abf_policy_t *
abf_policy_get (u32 index)
{
 return (pool_elt_at_index (abf_policy_pool, index));
}

Diffs are generated in the final docs nicely with “::” at the end of the description like so:

diff --git a/src/vpp/vnet/main.c b/src/vpp/vnet/main.c
index 6e136e19..69189c93 100644
--- a/src/vpp/vnet/main.c
+++ b/src/vpp/vnet/main.c
@@ -18,6 +18,8 @@
 #include <vlib/unix/unix.h>
 #include <vnet/plugin/plugin.h>
 #include <vnet/ethernet/ethernet.h>
+#include <vnet/ip/ip4_packet.h>
+#include <vnet/ip/format.h>
 #include <vpp/app/version.h>
 #include <vpp/api/vpe_msg_enum.h>
 #include <limits.h>
@@ -400,6 +402,63 @@ VLIB_CLI_COMMAND (test_crash_command, static) = {

 #endif

 Labels, References

Labels, References

A link or reference to other paragraphs within these documents can be done with
following construct.

In this example the reference points the label showintcommand. The label styleguide03
is shown at the top of this page. A label used in this way must be above a heading or title.

Show Interface command.

External Links

An external link is done with the following construct:

Sphinx Markup Constructs [http://www.sphinx-doc.org/en/stable/markup/index.html]

Images

Images should be placed in the directory docs/_images. They can then be referenced with
following construct. This is the image created to show a pull request.

[image: ../../../../_images/examplePullReq.png]

 Including a file

Including a file

A complete file should be included with the following construct. It is recomended it be included with
it’s own .rst file describing the file included. This is an example of an xml file is included.

	An XML File

 An XML File

An XML File

An example of an XML file.

<domain type='kvm' id='54'>
 <name>iperf-server</name>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <memoryBacking>
 <hugepages>
 <page size='2048' unit='KiB'/>
 </hugepages>
 </memoryBacking>
 <vcpu placement='static'>1</vcpu>
 <resource>
 <partition>/machine</partition>
 </resource>
 <os>
 <type arch='x86_64' machine='pc-i440fx-xenial'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 </features>
 <cpu mode='host-model'>
 <model fallback='allow'></model>
 <numa>
 <cell id='0' cpus='0' memory='262144' unit='KiB' memAccess='shared'/>
 </numa>
 </cpu>
 <clock offset='utc'>
 <timer name='rtc' tickpolicy='catchup'/>
 <timer name='pit' tickpolicy='delay'/>
 <timer name='hpet' present='no'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <pm>
 <suspend-to-mem enabled='no'/>
 <suspend-to-disk enabled='no'/>
 </pm>
 <devices>
 <emulator>/usr/bin/kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/tmp/xenial-mod.img'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
 </disk>
 <disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/scratch/jdenisco/sae/configs/cloud-config.iso'/>
 <backingStore/>
 <target dev='hda' bus='ide'/>
 <readonly/>
 <alias name='ide0-0-0'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </disk>
 <controller type='usb' index='0' model='ich9-ehci1'>
 <alias name='usb'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x7'/>
 </controller>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <controller type='ide' index='0'>
 <alias name='ide'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
 </controller>
 <controller type='virtio-serial' index='0'>
 <alias name='virtio-serial0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </controller>
 <interface type='vhostuser'>
 <mac address='52:54:00:4c:47:f2'/>
 <source type='unix' path='/tmp//vm00.sock' mode='server'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/2'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/2'>
 <source path='/dev/pts/2'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
 <graphics type='vnc' port='5900' autoport='yes' listen='127.0.0.1'>
 <listen type='address' address='127.0.0.1'/>
 </graphics>
 <memballoon model='virtio'>
 <alias name='balloon0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/>
 </memballoon>
 </devices>
 <seclabel type='dynamic' model='apparmor' relabel='yes'>
 <label>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</label>
 <imagelabel>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</imagelabel>
 </seclabel>
</domain>

 Raw HTML

Raw HTML

An html frame can be included with the following construct. It is recommended that references to raw html be included with it’s own .rst file.

	Raw HTML Example

 Raw HTML Example

Raw HTML Example

This example shows how to include include a CSIT performance graph.

 Markdown Style Guide

Markdown Style Guide

Most of these documents are written using reStructured Text Style Guide (rst), but pages can also be
written in Markdown. This chapter describes some constructs used to write these documents.
For a more detailed description of Markdown refer to Markdown Wikipedia [https://en.wikipedia.org/wiki/Markdown]

	Heading 1
	Heading 2
	Heading 3
	Heading 4
	Heading 5

	Bullets, Bold and Italics

	Code Blocks

	Labels, References

	External Links

	Images

 Heading 1

Heading 1

This is the top heading level. More levels are shown below.

Heading 2

Heading 3

Heading 4

Heading 5

 Bullets, Bold and Italics

Bullets, Bold and Italics

Bold text can be show with Bold Text, Italics with Italic text.
Bullets like so:

	Bullet 1

	Bullet 2

Code Blocks

This paragraph describes how to do Console Commands. When showing
VPP commands it is reccomended that the command be executed from the
linux console as shown. The Highlighting in the final documents shows up
nicely this way.

$ sudo bash
vppctl show interface
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213
 rx bytes 9928352943
 tx packets 50384
 tx bytes 3329279
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384
 rx bytes 3329279
 tx packets 6569213
 tx bytes 9928352943
 drops 1498
local0 0 down
#

The code-block construct is also used for code samples. The
following shows how to include a block of “C” code.

#include <vlib/unix/unix.h>
abf_policy_t *
abf_policy_get (u32 index)
{
 return (pool_elt_at_index (abf_policy_pool, index));
}

Diffs are generated in the final docs nicely with “:” at the end of
the description like so:

diff --git a/src/vpp/vnet/main.c b/src/vpp/vnet/main.c
index 6e136e19..69189c93 100644
--- a/src/vpp/vnet/main.c
+++ b/src/vpp/vnet/main.c
@@ -18,6 +18,8 @@
 #include <vlib/unix/unix.h>
 #include <vnet/plugin/plugin.h>
 #include <vnet/ethernet/ethernet.h>
+#include <vnet/ip/ip4_packet.h>
+#include <vnet/ip/format.h>
 #include <vpp/app/version.h>
 #include <vpp/api/vpe_msg_enum.h>
 #include <limits.h>
@@ -400,6 +402,63 @@ VLIB_CLI_COMMAND (test_crash_command, static) = {

 #endif

 Labels, References

Labels, References

A link or reference to other paragraphs within these documents can be
done with following construct.

External Links

An external link is done with the following construct:

Sphinx Markup
Constructs [http://www.sphinx-doc.org/en/stable/markup/index.html]

Images

Images should be placed in the directory docs/_images. They can then be
referenced with following construct. This is the image created to show a
pull request.

[image:]

 How to Report an Issue

How to Report an Issue

	Reporting Bugs

	Data to include in bug reports
	Image version and operating environment

	“Show” command output

	Network Topology

	Packet Tracer Output

	Capturing post-mortem data
	Syslog Output

	Binary API Trace

	Core Files

 Reporting Bugs

Reporting Bugs

Although every situation is different, this page describes how to
collect data which will help make efficient use of everyone’s time
when dealing with vpp bugs.

Before you press the Jira button to create a bug report - or email
vpp-dev@lists.fd.io - please ask yourself whether there’s enough
information for someone else to understand and possibly to reproduce
the issue given a reasonable amount of effort. Unicast emails to
maintainers, committers, and the project PTL are strongly discouraged.

A good strategy for clear-cut bugs: file a detailed Jira ticket, and
then send a short description of the issue to vpp-dev@lists.fd.io,
perhaps from the Jira ticket description. It’s fine to send email to
vpp-dev@lists.fd.io to ask a few questions before filing Jira tickets.

Data to include in bug reports

Image version and operating environment

Please make sure to include the vpp image version.

$ sudo bash
vppctl show version verbose

vpp v1.0.0-188~geef4d99 built by vagrant on localhost at Wed Feb 24 08:52:13 PST 2016
Built in /home/vagrant/git/vpp
Compiled with GCC 4.8.4
DPDK version is RTE 2.2.0
DPDK EAL init arguments: -c 1 -n 4 --socket-mem 1024 --huge-dir /run/vpp/hugepages
--file-prefix vpp -b 0000:02:00.0 -b 0000:02:01.0 --master-lcore 0

With respect to the operating environment: if misbehavior involving a
specific VM / container / bare-metal environment is involved, please
describe the environment in detail:

	Linux Distro (e.g. Ubuntu 14.04.3 LTS, CentOS-7, etc.)

	NIC type(s) (ixgbe, i40e, enic, etc. etc.), vhost-user, tuntap

	NUMA configuration if applicable

Please note the CPU architecture (x86_86, aarch64), and hardware platform.

When practicable, please report issues against released software, or
unmodified master/latest software.

“Show” command output

Every situation is different. If the issue involves a sequence of debug CLI command, please enable CLI command logging, and send the sequence involved. Note that the debug CLI is a developer’s tool - no warranty express or implied - and that we may choose not to fix debug CLI bugs.

Please include “show error” [error counter] output. It’s often helpful to “clear error”, send a bit of traffic, then “show error” particularly when running vpp on a noisy networks.

Please include ip4 / ip6 / mpls FIB contents (“show ip fib”, “show ip6 fib”, “show mpls fib”, “show mpls tunnel”).

Please include “show hardware”, “show interface”, and “show interface address” output

Here is a consolidated set of commands that are generally useful before/after sending traffic. Before sending traffic.

vppctl clear hardware
vppctl clear interface
vppctl clear error
vppctl clear run

Send some traffic and then issue the following commands.

vppctl show version verbose
vppctl show hardware
vppctl show hardware address
vppctl show interface
vppctl show run
vppctl show error

Here are some protocol specific show commands that may also make
sense. Only include those features which have been configured.

vppctl show l2fib
vppctl show bridge-domain

vppctl show ip fib
vppctl show ip arp

vppctl show ip6 fib
vppctl show ip6 neighbors

vppctl show mpls fib
vppctl show mpls tunnel

Network Topology

Please include a crisp description of the network topology, including
L2 / IP / MPLS / segment-routing addressing details. If you expect
folks to reproduce and debug issues, this is a must.

At or above a certain level of topological complexity, it becomes
problematic to reproduce the original setup.

Packet Tracer Output

If you capture packet tracer output which seems relevant, please include it.

vppctl trace add dpdk-input 100 # or similar

send-traffic

vppctl show trace

Capturing post-mortem data

It should go without saying, but anyhow: please put post-mortem data
in obvious, accessible places. Time wasted trying to acquire
accounts, credentials, and IP addresses simply delays problem
resolution.

Please remember to add post-mortem data location information to Jira
tickets.

Syslog Output

The vpp signal handler typically writes a certain amount of data in
/var/log/syslog before exiting. Make sure to check for evidence, e.g
via “grep /usr/bin/vpp /var/log/syslog” or similar.

Binary API Trace

If the issue involves a sequence of control-plane API messages - even
a very long sequence - please enable control-plane API
tracing. Control-plane API post-mortem traces end up in
/tmp/api_post_mortem.<pid>.

Please remember to put post-mortem binary api traces in accessible
places.

These API traces are especially helpful in cases where the vpp engine
is throwing traffic on the floor, e.g. for want of a default route or
similar.

Make sure to leave the default stanza “… api-trace { on } … ” in
the vpp startup configuration file /etc/vpp/startup.conf, or to
include it in the command line arguments passed by orchestration
software.

Core Files

Production systems, as well as long-running pre-production soak-test
systems, must arrange to collect core images. There are various
ways to configure core image capture, including e.g. the Ubuntu
“corekeeper” package. In a pinch, the following very basic sequence
will capture usable vpp core files in /tmp/dumps.

mkdir -p /tmp/dumps
sysctl -w debug.exception-trace=1
sysctl -w kernel.core_pattern="/tmp/dumps/%e-%t"
ulimit -c unlimited
echo 2 > /proc/sys/fs/suid_dumpable

Vpp core files often appear enormous. Gzip typically compresses them
to manageable sizes. A multi-GByte corefile often compresses to 10-20
Mbytes.

Please remember to put compressed core files in accessible places.

Make sure to leave the default stanza “… unix { … full-coredump
… } … ” in the vpp startup configuration file
/etc/vpp/startup.conf, or to include it in the command line arguments
passed by orchestration software.

Core files from private, modified images are discouraged. If it’s
necessary to go that route, please copy the exact Debian
packages (or RPMs) corresponding to the core file to the same public
place as the core file. In particular.

	vpp_<version>_<arch>.deb # the vpp executable

	vpp-dbg_<version>_<arch>.deb # debug symbols

	vpp-dev_<version>_<arch>.deb # development package

	vpp-lib_<version>_<arch>.deb # shared libraries

	vpp-plugins_<version>_<arch>.deb # plugins

Please include the full commit-ID the Jira ticket.

If we go through the setup process only to discover that the image and
core files don’t match, it will simply delay resolution of the
issue. And it will annoy the heck out of the engineer who just wasted
their time. Exact means exact, not “oh, gee, I added a few lines
of debug scaffolding since then…”

 Developers

Developers

This chapter will describe how developers can get started to with FD.io VPP. In this section
I can see writing a VPP pluguin, How to use the python api.

	Building in VPP
	Building Commands
	Building VPP Commands
	Set up Proxies

	Build VPP Dependencies

	Build VPP (Debug Mode)

	Build VPP (Release Version)

	Building Debian Packages
	For most operating systems (including Ubuntu)

	For CentOS

	Building on MacOS

	Useful Directories
	Useful Directories
	User Tools
	build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/

	VPP/bin
	build-root/install-vpp_debug-native/vpp/bin/

	Devbind
	dpdk-devbind.py

	vNet
	src/scripts/vnet/

	src/vnet/

	src/vnet/devices/

	Overview
	Software Architecture
	Implemetation taxonomy

	Vppinfra
	Vectors

	Bitmaps

	Pools

	Hashes

	Format

	Unformat

	Vppinfra errors and warnings

	Serialization

	Event-logger, graphical event log viewer

	G2 graphical event viewer

	VLIB
	Init function discovery

	Node Graph Initialization

	Graph node dispatcher

	Process / thread model

	Process events

	Buffers

	Shared-memory message API

	Plug-ins

	Debug CLI

	Packet tracer

	Vnet
	Effective graph dispatch function coding

	Single/dual loops

	Feature Arcs
	Adding a feature to an existing feature arc

	Creating a feature arc

	Enabling / Disabling features

	Related “show” commands

	Table of Feature Arcs

	Bounded-index Extensible Hashing
	Discussion of the algorithm

	Bihash Cookbook
	Using current (key,value) template instance types

	Initializing a bihash table

	Add or delete a key/value pair

	Simple search

	Bihash vector processing

	Walking a bihash table

	Creating a new template instance

 Building in VPP

Building in VPP

Once Fd.io VPP has been installed, this getting started guide will be useful to aid you in building FD.io VPP.

Building Commands

The following are instructions on how to build FD.io VPP.

	Building VPP Commands
	Set up Proxies

	Build VPP Dependencies

	Build VPP (Debug Mode)

	Build VPP (Release Version)

	Building Debian Packages
	For most operating systems (including Ubuntu)

	For CentOS

Building on MacOS

MacOS users are able to build VPP with the use of a Virtual Machine and set up Vagrant.

	Refer to Progressive VPP tutorial

Useful Directories

	Useful Directories
	User Tools
	build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/

	VPP/bin
	build-root/install-vpp_debug-native/vpp/bin/

	Devbind
	dpdk-devbind.py

	vNet
	src/scripts/vnet/

	src/vnet/

	src/vnet/devices/

 Building VPP Commands

Building VPP Commands

Set up Proxies

Depending on the environment, proxies may need to be set.
You may run these commands:

$ export http_proxy=http://<proxy-server-name>.com:<port-number>
$ export https_proxy=https://<proxy-server-name>.com:<port-number>

Build VPP Dependencies

Before building, make sure there are no FD.io VPP or DPDK packages installed by entering the following commands:

dpkg -l | grep vpp
dpkg -l | grep DPDK

Run this to install the dependency packages for FD.io VPP.
If it hangs during downloading at any point, make sure proxies were set first.

make install-dep

Output should look like this
...
...

Update-alternatives: using /usr/lib/jvm/java-8-openjdk-amd64/bin/jmap to provide /usr/bin/jmap (jmap) in auto mode
Setting up default-jdk-headless (2:1.8-56ubuntu2) ...
Processing triggers for libc-bin (2.23-0ubuntu3) ...
Processing triggers for systemd (229-4ubuntu6) ...
Processing triggers for ureadahead (0.100.0-19) ...
Processing triggers for ca-certificates (20160104ubuntu1) ...
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...

done.
done.

Build VPP (Debug Mode)

This build version contains debug symbols which is useful to modify VPP. The command below will build debug version of VPP.
This build will come with /build-root/vpp_debug-native.

make build

You may ignore the following warning if encountered after running the make build command:

libtool: warning: remember to run 'libtool --finish /none'

Build VPP (Release Version)

To build release version of VPP.
This is package is for those who will not be debugging in VPP.
This build will come with /build-root/build-vpp-native

make release

Building Debian Packages

After running the previous commands, it is still necessary to build the debian packages.

Execute one of the two commands below depending on the system:

For most operating systems (including Ubuntu)

make pkg-deb

For CentOS

make pkg-rpm

Note

Please follow the commands that the Operating System prompts, after running one of the commands above

The packages will be found in the build-root directory.

ls *.deb

If packages built correctly, this should be the Output

vpp_18.07-rc0~456-gb361076_amd64.deb vpp-dbg_18.07-rc0~456-gb361076_amd64.deb
vpp-api-java_18.07-rc0~456-gb361076_amd64.deb vpp-dev_18.07-rc0~456-gb361076_amd64.deb
vpp-api-lua_18.07-rc0~456-gb361076_amd64.deb vpp-lib_18.07-rc0~456-gb361076_amd64.deb
vpp-api-python_18.07-rc0~456-gb361076_amd64.deb vpp-plugins_18.07-rc0~456-gb361076_amd64.deb

Packages built installed end up in build-root directory. Finally, the command below installs all built packages.

dpkg -i *.deb

 Useful Directories

Useful Directories

After pulling and building FDIO there are a few directories worth looking at.
src/vpp/conf

This directory contains default configuration files.

ls
80-vpp.conf startup.conf

User Tools

This directory is provided with DPDK. The two import scripts are cpu_layout.py and dpdk-devbind.py

build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/

ls ./build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/
cpu_layout.py dpdk-devbind.py dpdk-pmdinfo.py dpdk-setup.sh

VPP/bin

build-root/install-vpp_debug-native/vpp/bin/

	This directory contains the vpp executables.

	The most useful files are vpp and vppctl.

	These files are copied to/usr/bin after FDIO is installed.

	You can use the binary file “vpp” located in this directory with gdb to help debug FDIO.

root@tf-ucs-3# ls ./build-root/install-vpp_debug-native/vpp/bin
elftool svmdbtool svmtool vpp vppapigen vpp_api_test vppctl vpp_get_metrics vpp_json_test vpp_restart

Devbind

dpdk-devbind.py

	The dpdk-devbind.py script is provided with the Intel DPDK.

	It is included with FD.io VPP.

	After FD.io VPP is built, this script and other DPDK tools can be found in build-root/build-vpp_debug-native/dpdk/dpdk-17.02/usertools/.

vNet

src/scripts/vnet/

This directory has some very useful examples using the FDIO traffic generator and general configuration.

ls src/scripts/vnet/
arp4 dhcp ip6 l2efpfilter_perf l2flood mcast pcap rightpeer snat_det

src/vnet/

This directory contains most of the important source code.

ls src/vnet
adj config.h fib interface.api interface_output.c lawful-intercept misc.c ppp

src/vnet/devices/

This directory contains the device drivers. For example, the vhost driver is in src/vnet/devices/virtio.

ls src/vnet/devices/virtio/
dir.dox vhost_user.api vhost_user_api.c vhost-user.c vhost-user.h

 Overview

Overview

Describe the software archetecture here.

	Software Architecture
	Implemetation taxonomy

	Vppinfra
	Vectors

	Bitmaps

	Pools

	Hashes

	Format

	Unformat

	Vppinfra errors and warnings

	Serialization

	Event-logger, graphical event log viewer

	G2 graphical event viewer

	VLIB
	Init function discovery

	Node Graph Initialization

	Graph node dispatcher

	Process / thread model

	Process events

	Buffers

	Shared-memory message API

	Plug-ins

	Debug CLI

	Packet tracer

	Vnet
	Effective graph dispatch function coding

	Single/dual loops

	Feature Arcs
	Adding a feature to an existing feature arc

	Creating a feature arc

	Enabling / Disabling features

	Related “show” commands

	Table of Feature Arcs

	Bounded-index Extensible Hashing
	Discussion of the algorithm

	Bihash Cookbook
	Using current (key,value) template instance types

	Initializing a bihash table

	Add or delete a key/value pair

	Simple search

	Bihash vector processing

	Walking a bihash table

	Creating a new template instance

 Software Architecture

Software Architecture

Note

Add Overview Section.

The fd.io vpp implementation is a third-generation vector packet
processing implementation specifically related to US Patent 7,961,636,
as well as earlier work. Note that the Apache-2 license specifically
grants non-exclusive patent licenses; we mention this patent as a
point of historical interest.

For performance, the vpp dataplane consists of a directed graph of
forwarding nodes which process multiple packets per invocation. This
schema enables a variety of micro-processor optimizations: pipelining
and prefetching to cover dependent read latency, inherent I-cache
phase behavior, vector instructions. Aside from hardware input and hardware output nodes,
the entire forwarding graph is portable code.

Depending on the scenario at hand, we often spin up multiple worker
threads which process ingress-hashes packets from multiple queues using
identical forwarding graph replicas.

Implemetation taxonomy

The vpp dataplane consists of four distinct layers:

	An infrastructure layer comprising vppinfra, vlib, svm, and binary api libraries. See …/src/{vppinfra, vlib, svm, vlibapi, vlibmemory}

	A generic network stack layer: vnet. See …/src/vnet

	An application shell: vpp. See …/src/vpp

	An increasingly rich set of data-plane plugins: see …/src/plugins

It’s important to understand each of these layers in a certain amount
of detail. Much of the implementation is best dealt with at the API
level and otherwise left alone.

Vppinfra

Vppinfra is a collection of basic c-library services, quite sufficient
to build standalone programs to run directly on bare metal. It also
provides high-performance dynamic arrays, hashes, bitmaps,
high-precision real-time clock support, fine-grained event-logging,
and data structure serialization.

One fair comment / fair warning about vppinfra: you can’t always tell
a macro from an inline function from an ordinary function simply by
name. Macros are used to avoid function calls in the typical case, and
to cause (intentional) side-effects.

Vppinfra has been around for almost 20 years and tends not to change frequently.

Vectors

Vppinfra vectors are ubiquitous dynamically resized arrays with by
user defined “headers”. Many vpppinfra data structures (e.g. hash,
heap, pool) are vectors with various different headers.

The memory layout looks like this:

 User header (optional, uword aligned)
 Alignment padding (if needed)
 Vector length in elements
User's pointer -> Vector element 0
 Vector element 1
 ...
 Vector element N-1

As shown above, the vector APIs deal with pointers to the 0th element
of a vector. Null pointers are valid vectors of length zero.

To avoid thrashing the memory allocator, one often resets the length
of a vector to zero while retaining the memory allocation. Set the
vector length field to zero via the vec_reset_length(v) macro. [Use
the macro! It’s smart about NULL pointers.]

Typically, the user header is not present. User headers allow for
other data structures to be built atop vppinfra vectors. Users may
specify the alignment for data elements via the vec_*_aligned macros.

Vectors elements can be any C type e.g. (int, double, struct
bar). This is also true for data types built atop vectors (e.g. heap,
pool, etc.). Many macros have _a variants supporting alignment of
vector data and _h variants supporting non-zero-length vector
headers. The _ha variants support both.

Inconsistent usage of header and/or alignment related macro variants
will cause delayed, confusing failures.

Standard programming error: memorize a pointer to the ith element of a
vector, and then expand the vector. Vectors expand by 3/2, so such
code may appear to work for a period of time. Correct code almost
always memorizes vector indices which are invariant across
reallocations.

In typical application images, one supplies a set of global functions
designed to be called from gdb. Here are a few examples:

	vl(v) - prints vec_len(v)

	pe(p) - prints pool_elts(p)

	pifi(p, index) - prints pool_is_free_index(p, index)

	debug_hex_bytes (p, nbytes) - hex memory dump nbytes starting at p

Use the “show gdb” debug CLI command to print the current set.

Bitmaps

Vppinfra bitmaps are dynamic, built using the vppinfra vector
APIs. Quite handy for a variety jobs.

Pools

Vppinfra pools combine vectors and bitmaps to rapidly allocate and
free fixed-size data structures with independent lifetimes. Pools are
perfect for allocating per-session structures.

Hashes

Vppinfra provides several hash flavors. Data plane problems involving
packet classification / session lookup often use
…/src/vppinfra/bihash_template.[ch] bounded-index extensible
hashes. These templates are instantiated multiple times, to
efficiently service different fixed-key sizes.

Bihashes are thread-safe. Read-locking is not required. A simple
spin-lock ensures that only one thread writes an entry at a time.

The original vppinfra hash implementation in …/src/vppinfra/hash.[ch] are simple to use, and are often used in control-plane code which needs exact-string-matching.

In either case, one almost always looks up a key in a hash table to
obtain an index in a related vector or pool. The APIs are simple
enough, but one must take care when using the unmanaged
arbitrary-sized key variant. Hash_set_mem (hash_table, key_pointer,
value) memorizes key_pointer. It is usually a bad mistake to pass the
address of a vector element as the second argument to hash_set_mem. It
is perfectly fine to memorize constant string addresses in the text
segment.

Format

Vppinfra format is roughly equivalent to printf.

Format has a few properties worth mentioning. Format’s first argument
is a (u8 *) vector to which it appends the result of the current
format operation. Chaining calls is very easy:

u8 * result;

result = format (0, "junk = %d, ", junk);
result = format (result, "more junk = %d\n", more_junk);

As previously noted, NULL pointers are perfectly proper 0-length
vectors. Format returns a (u8 *) vector, not a C-string. If you
wish to print a (u8 *) vector, use the “%v” format string. If you need
a (u8 *) vector which is also a proper C-string, either of these
schemes may be used:

vec_add1 (result, 0)
or
result = format (result, "<whatever>%c", 0);

Remember to vec_free() the result if appropriate. Be careful not to
pass format an uninitialized u8 *.

Format implements a particularly handy user-format scheme via the “%U”
format specification. For example:

u8 * format_junk (u8 * s, va_list *va)
{
 junk = va_arg (va, u32);
 s = format (s, "%s", junk);
 return s;
}

result = format (0, "junk = %U, format_junk, "This is some junk");

format_junk() can invoke other user-format functions if desired. The
programmer shoulders responsibility for argument type-checking. It is
typical for user format functions to blow up if the va_arg(va, <type>)
macros don’t match the caller’s idea of reality.

Unformat

Vppinfra unformat is vaguely related to scanf, but considerably more general.

A typical use case involves initializing an unformat_input_t from
either a C-string or a (u8 *) vector, then parsing via unformat() as
follows:

unformat_input_t input;

unformat_init_string (&input, "<some-C-string>");
/* or */
unformat_init_vector (&input, <u8-vector>);

Then loop parsing individual elements:

while (unformat_check_input (&input) != UNFORMAT_END_OF_INPUT)
{
 if (unformat (&input, "value1 %d", &value1))
 ;/* unformat sets value1 */
 else if (unformat (&input, "value2 %d", &value2)
 ;/* unformat sets value2 */
 else
 return clib_error_return (0, "unknown input '%U'", format_unformat_error,
 input);
}

As with format, unformat implements a user-unformat function
capability via a “%U” user unformat function scheme.

Vppinfra errors and warnings

Many functions within the vpp dataplane have return-values of type
clib_error_t *. Clib_error_t’ss are arbitrary strings with a
bit of metadata [fatal, warning] and are easy to announce. Returning
a NULL clib_error_t * indicates “A-OK, no error.”

Clib_warning(<format-args>) is a handy way to add debugging output;
clib warnings prepend function:line info to unambiguously locate the
message source. Clib_unix_warning() adds perror()-style Linux
system-call information. In production images, clib_warnings result in
syslog entries.

Serialization

Vppinfra serialization support allows the programmer to easily serialize and unserialize complex data structures.

The underlying primitive serialize/unserialize functions use network
byte-order, so there are no structural issues serializing on a
little-endian host and unserializing on a big-endian host.

Event-logger, graphical event log viewer

The vppinfra event logger provides very lightweight (sub-100ns)
precisely time-stamped event-logging services. See
…/src/vppinfra/{elog.c, elog.h}

Serialization support makes it easy to save and ultimately to combine
a set of event logs. In a distributed system running NTP over a local
LAN, we find that event logs collected from multiple system elements
can be combined with a temporal uncertainty no worse than 50us.

A typical event definition and logging call looks like this:

ELOG_TYPE_DECLARE (e) =
{
 .format = "tx-msg: stream %d local seq %d attempt %d",
 .format_args = "i4i4i4",
};
struct { u32 stream_id, local_sequence, retry_count; } * ed;
ed = ELOG_DATA (m->elog_main, e);
ed->stream_id = stream_id;
ed->local_sequence = local_sequence;
ed->retry_count = retry_count;

The ELOG_DATA macro returns a pointer to 20 bytes worth of arbitrary
event data, to be formatted (offline, not at runtime) as described by
format_args. Aside from obvious integer formats, the CLIB event logger
provides a couple of interesting additions. The “t4” format
pretty-prints enumerated values:

ELOG_TYPE_DECLARE (e) =
{
 .format = "get_or_create: %s",
 .format_args = "t4",
 .n_enum_strings = 2,
 .enum_strings = { "old", "new", },
};

The “t” format specifier indicates that the corresponding datum is an
index in the event’s set of enumerated strings, as shown in the
previous event type definition.

The “T” format specifier indicates that the corresponding datum is an
index in the event log’s string heap. This allows the programmer to
emit arbitrary formatted strings. One often combines this facility
with a hash table to keep the event-log string heap from growing
arbitrarily large.

Noting the 20-octet limit per-log-entry data field, the event log
formatter supports arbitrary combinations of these data types. As in:
the “.format” field may contain one or more instances of the
following:

	i1 - 8-bit unsigned integer

	i2 - 16-bit unsigned integer

	i4 - 32-bit unsigned integer

	i8 - 64-bit unsigned integer

	f4 - float

	f8 - double

	s - NULL-terminated string - be careful

	sN - N-byte character array

	t1,2,4 - per-event enumeration ID

	T4 - Event-log string table offset

The vpp engine event log is thread-safe, and is shared by all
threads. Take care not to serialize the computation. Although the
event-logger is about as fast as practicable, it’s not appropriate for
per-packet use in hard-core data plane code. It’s most appropriate for
capturing rare events - link up-down events, specific control-plane
events and so forth.

The vpp engine has several debug CLI commands for manipulating its event log:

vpp# event-logger clear
vpp# event-logger save <filename> # for security, writes into /tmp/<filename>.
 # <filename> must not contain '.' or '/' characters
vpp# show event-logger [all] [<nnn>] # display the event log
 # by default, the last 250 entries

The event log defaults to 128K entries. The command-line argument
“… vlib { elog-events <nnn> }” configures the size of the event log.

As described above, the vpp engine event log is thread-safe and
shared. To avoid confusing non-appearance of events logged by worker
threads, make sure to code &vlib_global_main.elog_main - instead of
&vm->elog_main. The latter form is correct in the main thread, but
will almost certainly produce bad results in worker threads.

G2 graphical event viewer

The g2 graphical event viewer can display serialized vppinfra event
logs directly, or via the c2cpel tool.

Note

Todo: please convert wiki page and figures

VLIB

Vlib provides vector processing support including graph-node
scheduling, reliable multicast support, ultra-lightweight cooperative
multi-tasking threads, a CLI, plug in .DLL support, physical memory
and Linux epoll support. Parts of this library embody US Patent
7,961,636.

Init function discovery

vlib applications register for various [initialization] events by
placing structures and __attribute__((constructor)) functions into the
image. At appropriate times, the vlib framework walks
constructor-generated singly-linked structure lists, calling the
indicated functions. vlib applications create graph nodes, add CLI
functions, start cooperative multi-tasking threads, etc. etc. using
this mechanism.

vlib applications invariably include a number of VLIB_INIT_FUNCTION
(my_init_function) macros.

Each init / configure / etc. function has the return type clib_error_t
*. Make sure that the function returns 0 if all is well, otherwise
the framework will announce an error and exit.

vlib applications must link against vppinfra, and often link against
other libraries such as VNET. In the latter case, it may be necessary
to explicitly reference symbol(s) otherwise large portions of the
library may be AWOL at runtime.

Node Graph Initialization

vlib packet-processing applications invariably define a set of graph
nodes to process packets.

One constructs a vlib_node_registration_t, most often via the
VLIB_REGISTER_NODE macro. At runtime, the framework processes the set
of such registrations into a directed graph. It is easy enough to add
nodes to the graph at runtime. The framework does not support removing
nodes.

vlib provides several types of vector-processing graph nodes,
primarily to control framework dispatch behaviors. The type member of
the vlib_node_registration_t functions as follows:

	VLIB_NODE_TYPE_PRE_INPUT - run before all other node types

	VLIB_NODE_TYPE_INPUT - run as often as possible, after pre_input nodes

	VLIB_NODE_TYPE_INTERNAL - only when explicitly made runnable by adding pending frames for processing

	VLIB_NODE_TYPE_PROCESS - only when explicitly made runnable. “Process” nodes are actually cooperative multi-tasking threads. They must explicitly suspend after a reasonably short period of time.

For a precise understanding of the graph node dispatcher, please read
…/src/vlib/main.c:vlib_main_loop.

Graph node dispatcher

Vlib_main_loop() dispatches graph nodes. The basic vector processing
algorithm is diabolically simple, but may not be obvious from even a
long stare at the code. Here’s how it works: some input node, or
set of input nodes, produce a vector of work to process. The graph
node dispatcher pushes the work vector through the directed graph,
subdividing it as needed, until the original work vector has been
completely processed. At that point, the process recurs.

This scheme yields a stable equilibrium in frame size, by
construction. Here’s why: as the frame size increases, the
per-frame-element processing time decreases. There are several related
forces at work; the simplest to describe is the effect of vector
processing on the CPU L1 I-cache. The first frame element [packet]
processed by a given node warms up the node dispatch function in the
L1 I-cache. All subsequent frame elements profit. As we increase the
number of frame elements, the cost per element goes down.

Under light load, it is a crazy waste of CPU cycles to run the graph
node dispatcher flat-out. So, the graph node dispatcher arranges to
wait for work by sitting in a timed epoll wait if the prevailing frame
size is low. The scheme has a certain amount of hysteresis to avoid
constantly toggling back and forth between interrupt and polling
mode. Although the graph dispatcher supports interrupt and polling
modes, our current default device drivers do not.

The graph node scheduler uses a hierarchical timer wheel to reschedule
process nodes upon timer expiration.

Process / thread model

vlib provides an ultra-lightweight cooperative multi-tasking thread
model. The graph node scheduler invokes these processes in much the
same way as traditional vector-processing run-to-completion graph
nodes; plus-or-minus a setjmp/longjmp pair required to switch
stacks. Simply set the vlib_node_registration_t type field to
vlib_NODE_TYPE_PROCESS. Yes, process is a misnomer. These are
cooperative multi-tasking threads.

As of this writing, the default stack size is 2<<15; 32kb. Initialize
the node registration’s process_log2_n_stack_bytes member as
needed. The graph node dispatcher makes some effort to detect stack
overrun, e.g. by mapping a no-access page below each thread stack.

Process node dispatch functions are expected to be “while(1) { }” loops
which suspend when not otherwise occupied, and which must not run for
unreasonably long periods of time.

“Unreasonably long” is an application-dependent concept. Over the
years, we have constructed frame-size sensitive control-plane nodes
which will use a much higher fraction of the available CPU bandwidth
when the frame size is low. The classic example: modifying forwarding
tables. So long as the table-builder leaves the forwarding tables in a
valid state, one can suspend the table builder to avoid dropping
packets as a result of control-plane activity.

Process nodes can suspend for fixed amounts of time, or until another
entity signals an event, or both. See the next section for a
description of the vlib process event mechanism.

When running in vlib process context, one must pay strict attention to
loop invariant issues. If one walks a data structure and calls a
function which may suspend, one had best know by construction that it
cannot change. Often, it’s best to simply make a snapshot copy of a
data structure, walk the copy at leisure, then free the copy.

Process events

The vlib process event mechanism API is extremely lightweight and easy
to use. Here is a typical example:

vlib_main_t *vm = &vlib_global_main;
uword event_type, * event_data = 0;

while (1)
{
 vlib_process_wait_for_event_or_clock (vm, 5.0 /* seconds */);

 event_type = vlib_process_get_events (vm, &event_data);

 switch (event_type) {
 case EVENT1:
 handle_event1s (event_data);
 break;

 case EVENT2:
 handle_event2s (event_data);
 break;

 case ~0: /* 5-second idle/periodic */
 handle_idle ();
 break;

 default: /* bug! */
 ASSERT (0);
 }

 vec_reset_length(event_data);
}

In this example, the VLIB process node waits for an event to occur, or
for 5 seconds to elapse. The code demuxes on the event type, calling
the appropriate handler function. Each call to vlib_process_get_events
returns a vector of per-event-type data passed to successive
vlib_process_signal_event calls; vec_len (event_data) >= 1.

It is an error to process only event_data[0].

Resetting the event_data vector-length to 0 [instead of calling
vec_free] means that the event scheme doesn’t burn cycles continuously
allocating and freeing the event data vector. This is a common
vppinfra / vlib coding pattern, well worth using when appropriate.

Signaling an event is easy, for example:

vlib_process_signal_event (vm, process_node_index, EVENT1,
 (uword)arbitrary_event1_data); /* and so forth */

One can either know the process node index by construction - dig it
out of the appropriate vlib_node_registration_t - or by finding the
vlib_node_t with vlib_get_node_by_name(…).

Buffers

vlib buffering solves the usual set of packet-processing problems,
albeit at high performance. Key in terms of performance: one
ordinarily allocates / frees N buffers at a time rather than one at a
time. Except when operating directly on a specific buffer, one deals
with buffers by index, not by pointer.

Packet-processing frames are effectively u32[], not
vlib_buffer_t[].

Packets comprise one or more vlib buffers, chained together as
required. Multiple particle sizes are supported; hardware input nodes
simply ask for the required size(s). Coalescing support is
available. For obvious reasons one is discouraged from writing one’s
own wild and wacky buffer chain traversal code.

vlib buffer headers are allocated immediately prior to the buffer data
area. In typical packet processing this saves a dependent read wait:
given a buffer’s address, one can prefetch the buffer header
[metadata] at the same time as the first cache line of buffer data.

Buffer header metadata (vlib_buffer_t) includes the usual rewrite
expansion space, a current_data offset, RX and TX interface indices,
packet trace information, and a opaque areas.

The opaque data is intended to control packet processing in arbitrary
subgraph-dependent ways. The programmer shoulders responsibility for
data lifetime analysis, type-checking, etc.

Buffers have reference-counts in support of e.g. multicast
replication.

Shared-memory message API

Local control-plane and application processes interact with the vpp
dataplane via asynchronous message-passing in shared memory over
unidirectional queues. The same application APIs are available via
sockets.

Capturing API traces and replaying them in a
simulation environment requires a disciplined approach
to the problem. This seems like a make-work task, but it is not. When
something goes wrong in the control-plane after 300,000 or 3,000,000
operations, high-speed replay of the events leading up to the accident
is a huge win.

The shared-memory message API message allocator vl_api_msg_alloc uses
a particularly cute trick. Since messages are processed in order, we
try to allocate message buffering from a set of fixed-size,
preallocated rings. Each ring item has a “busy” bit. Freeing one of
the preallocated message buffers merely requires the message consumer
to clear the busy bit. No locking required.

Plug-ins

vlib implements a straightforward plug-in DLL
mechanism. VLIB client applications specify a directory to search for
plug-in .DLLs, and a name filter to apply (if desired). VLIB needs to
load plug-ins very early.

Once loaded, the plug-in DLL mechanism uses dlsym to find and verify
a vlib_plugin_registration data structure in the newly-loaded
plug-in.

Debug CLI

Adding debug CLI commands to VLIB applications is very simple.

Here is a complete example:

static clib_error_t *
show_ip_tuple_match (vlib_main_t * vm,
 unformat_input_t * input,
 vlib_cli_command_t * cmd)
{
 vlib_cli_output (vm, "%U\n", format_ip_tuple_match_tables, &routing_main);
 return 0;
}

static VLIB_CLI_COMMAND (show_ip_tuple_command) = {
 .path = "show ip tuple match",
 .short_help = "Show ip 5-tuple match-and-broadcast tables",
 .function = show_ip_tuple_match,
};

This example implements the “show ip tuple match” debug cli
command. In ordinary usage, the vlib cli is available via the “vppctl”
applicationn, which sends traffic to a named pipe. One can configure
debug CLI telnet access on a configurable port.

The cli implementation has an output redirection facility which makes
it simple to deliver cli output via shared-memory API messaging,

Particularly for debug or “show tech support” type commands, it would
be wasteful to write vlib application code to pack binary data, write
more code elsewhere to unpack the data and finally print the
answer. If a certain cli command has the potential to hurt packet
processing performance by running for too long, do the work
incrementally in a process node. The client can wait.

Packet tracer

Vlib includes a frame element [packet] trace facility, with a simple
vlib cli interface. The cli is straightforward: “trace add
<input-node-name> <count>”.

To trace 100 packets on a typical x86_64 system running the dpdk
plugin: “trace add dpdk-input 100”. When using the packet generator:
“trace add pg-input 100”

Each graph node has the opportunity to capture its own trace data. It
is almost always a good idea to do so. The trace capture APIs are
simple.

The packet capture APIs snapshoot binary data, to minimize processing
at capture time. Each participating graph node initialization provides
a vppinfra format-style user function to pretty-print data when required
by the VLIB “show trace” command.

Set the VLIB node registration “.format_trace” member to the name of the per-graph node format function.

Here’s a simple example:

u8 * my_node_format_trace (u8 * s, va_list * args)
{
 vlib_main_t * vm = va_arg (*args, vlib_main_t *);
 vlib_node_t * node = va_arg (*args, vlib_node_t *);
 my_node_trace_t * t = va_arg (*args, my_trace_t *);

 s = format (s, "My trace data was: %d", t-><whatever>);

 return s;
}

The trace framework hands the per-node format function the data it
captured as the packet whizzed by. The format function pretty-prints
the data as desired.

Vnet

The vnet library provides vectorized layer-2 and 3 networking graph
nodes, a packet generator, and a packet tracer.

In terms of building a packet processing application, vnet provides a
platform-independent subgraph to which one connects a couple of
device-driver nodes.

Typical RX connections include “ethernet-input” [full software
classification, feeds ipv4-input, ipv6-input, arp-input etc.] and
“ipv4-input-no-checksum” [if hardware can classify, perform ipv4
header checksum].

Effective graph dispatch function coding

Over the 15 years, two distinct styles have emerged: a
single/dual/quad loop coding model and a fully-pipelined coding
model. We seldom use the fully-pipelined coding model, so we won’t
describe it in any detail

Single/dual loops

The single/dual/quad loop model is the only way to conveniently solve
problems where the number of items to process is not known in advance:
typical hardware RX-ring processing. This coding style is also very
effective when a given node will not need to cover a complex set of
dependent reads.

 Feature Arcs

Feature Arcs

A significant number of vpp features are configurable on a per-interface
or per-system basis. Rather than ask feature coders to manually
construct the required graph arcs, we built a general mechanism to
manage these mechanics.

Specifically, feature arcs comprise ordered sets of graph nodes. Each
feature node in an arc is independently controlled. Feature arc nodes
are generally unaware of each other. Handing a packet to “the next
feature node” is quite inexpensive.

The feature arc implementation solves the problem of creating graph arcs
used for steering.

At the beginning of a feature arc, a bit of setup work is needed, but
only if at least one feature is enabled on the arc.

On a per-arc basis, individual feature definitions create a set of
ordering dependencies. Feature infrastructure performs a topological
sort of the ordering dependencies, to determine the actual feature
order. Missing dependencies will lead to runtime disorder. See
https://gerrit.fd.io/r/#/c/12753 for an example.

If no partial order exists, vpp will refuse to run. Circular dependency
loops of the form “a then b, b then c, c then a” are impossible to
satisfy.

Adding a feature to an existing feature arc

To nobody’s great surprise, we set up feature arcs using the typical
“macro -> constructor function -> list of declarations” pattern:

 VNET_FEATURE_INIT (mactime, static) =
 {
 .arc_name = "device-input",
 .node_name = "mactime",
 .runs_before = VNET_FEATURES ("ethernet-input"),
 };

This creates a “mactime” feature on the “device-input” arc.

Once per frame, dig up the vnet_feature_config_main_t corresponding
to the “device-input” feature arc:

 vnet_main_t *vnm = vnet_get_main ();
 vnet_interface_main_t *im = &vnm->interface_main;
 u8 arc = im->output_feature_arc_index;
 vnet_feature_config_main_t *fcm;

 fcm = vnet_feature_get_config_main (arc);

Note that in this case, we’ve stored the required arc index - assigned
by the feature infrastructure - in the vnet_interface_main_t. Where
to put the arc index is a programmer’s decision when creating a feature
arc.

Per packet, set next0 to steer packets to the next node they should
visit:

 vnet_get_config_data (&fcm->config_main,
 &b0->current_config_index /* value-result */,
 &next0, 0 /* # bytes of config data */);

Configuration data is per-feature arc, and is often unused. Note that
it’s normal to reset next0 to divert packets elsewhere; often, to drop
them for cause:

 next0 = MACTIME_NEXT_DROP;
 b0->error = node->errors[DROP_CAUSE];

Creating a feature arc

Once again, we create feature arcs using constructor macros:

 VNET_FEATURE_ARC_INIT (ip4_unicast, static) =
 {
 .arc_name = "ip4-unicast",
 .start_nodes = VNET_FEATURES ("ip4-input", "ip4-input-no-checksum"),
 .arc_index_ptr = &ip4_main.lookup_main.ucast_feature_arc_index,
 };

In this case, we configure two arc start nodes to handle the
“hardware-verified ip checksum or not” cases. During initialization,
the feature infrastructure stores the arc index as shown.

In the head-of-arc node, do the following to send packets along the
feature arc:

 ip_lookup_main_t *lm = &im->lookup_main;
 arc = lm->ucast_feature_arc_index;

Once per packet, initialize packet metadata to walk the feature arc:

vnet_feature_arc_start (arc, sw_if_index0, &next, b0);

Enabling / Disabling features

Simply call vnet_feature_enable_disable to enable or disable a specific
feature:

 vnet_feature_enable_disable ("device-input", /* arc name */
 "mactime", /* feature name */
 sw_if_index, /* Interface sw_if_index */
 enable_disable, /* 1 => enable */
 0 /* (void *) feature_configuration */,
 0 /* feature_configuration_nbytes */);

The feature_configuration opaque is seldom used.

If you wish to make a feature a de facto system-level concept, pass
sw_if_index=0 at all times. Sw_if_index 0 is always valid, and
corresponds to the “local” interface.

Related “show” commands

To display the entire set of features, use “show features [verbose]”. The
verbose form displays arc indices, and feature indicies within the arcs

$ vppctl show features verbose
Available feature paths
<snip>
[14] ip4-unicast:
 [0]: nat64-out2in-handoff
 [1]: nat64-out2in
 [2]: nat44-ed-hairpin-dst
 [3]: nat44-hairpin-dst
 [4]: ip4-dhcp-client-detect
 [5]: nat44-out2in-fast
 [6]: nat44-in2out-fast
 [7]: nat44-handoff-classify
 [8]: nat44-out2in-worker-handoff
 [9]: nat44-in2out-worker-handoff
 [10]: nat44-ed-classify
 [11]: nat44-ed-out2in
 [12]: nat44-ed-in2out
 [13]: nat44-det-classify
 [14]: nat44-det-out2in
 [15]: nat44-det-in2out
 [16]: nat44-classify
 [17]: nat44-out2in
 [18]: nat44-in2out
 [19]: ip4-qos-record
 [20]: ip4-vxlan-gpe-bypass
 [21]: ip4-reassembly-feature
 [22]: ip4-not-enabled
 [23]: ip4-source-and-port-range-check-rx
 [24]: ip4-flow-classify
 [25]: ip4-inacl
 [26]: ip4-source-check-via-rx
 [27]: ip4-source-check-via-any
 [28]: ip4-policer-classify
 [29]: ipsec-input-ip4
 [30]: vpath-input-ip4
 [31]: ip4-vxlan-bypass
 [32]: ip4-lookup
<snip>

Here, we learn that the ip4-unicast feature arc has index 14, and that
e.g. ip4-inacl is the 25th feature in the generated partial order.

To display the features currently active on a specific interface,
use “show interface features”:

 Bounded-index Extensible Hashing

Bounded-index Extensible Hashing

Vpp uses bounded-index extensible hashing to solve a variety of
exact-match (key, value) lookup problems. Benefits of the current
implementation:

	Very high record count scaling, tested to 100,000,000 records.

	Lookup performance degrades gracefully as the number of records increases

	No reader locking required

	Template implementation, it’s easy to support arbitrary (key,value) types

Bounded-index extensible hashing has been widely used in databases for
decades.

Bihash uses a two-level data structure:

 +-----------------+
 | bucket-0 |
 | log2_size |
 | backing store |
 +-----------------+
 | bucket-1 |
 | log2_size | +--------------------------------+
 | backing store | --------> | KVP_PER_PAGE * key-value-pairs |
 +-----------------+ | page 0 |
 ... +--------------------------------+
 +-----------------+ | KVP_PER_PAGE * key-value-pairs |
 | bucket-2**N-1 | | page 1 |
 | log2_size | +--------------------------------+
 | backing store | ---
 +-----------------+ +--------------------------------+
 | KVP_PER_PAGE * key-value-pairs |
 | page 2**(log2(size)) - 1 |
 +--------------------------------+

Discussion of the algorithm

This structure has a couple of major advantages. In practice, each
bucket entry fits into a 64-bit integer. Coincidentally, vpp’s target
CPU architectures support 64-bit atomic operations. When modifying the
contents of a specific bucket, we do the following:

	Make a working copy of the bucket’s backing storage

	Atomically swap a pointer to the working copy into the bucket array

	Change the original backing store data

	Atomically swap back to the original

So, no reader locking is required to search a bihash table.

At lookup time, the implementation computes a key hash code. We use
the least-significant N bits of the hash to select the bucket.

With the bucket in hand, we learn log2 (nBackingPages) for the
selected bucket. At this point, we use the next log2_size bits from
the hash code to select the specific backing page in which the
(key,value) page will be found.

Net result: we search one backing page, not 2**log2_size
pages. This is a key property of the algorithm.

When sufficient collisions occur to fill the backing pages for a given
bucket, we double the bucket size, rehash, and deal the bucket
contents into a double-sized set of backing pages. In the future, we
may represent the size as a linear combination of two powers-of-two,
to increase space efficiency.

To solve the “jackpot case” where a set of records collide under
hashing in a bad way, the implementation will fall back to linear
search across 2**log2_size backing pages on a per-bucket basis.

To maintain space efficiency, we should configure the bucket array
so that backing pages are effectively utilized. Lookup performance
tends to change very litte if the bucket array is too small or too
large.

Bihash depends on selecting an effective hash function. If one were to
use a truly broken hash function such as “return 1ULL.” bihash would
still work, but it would be equivalent to poorly-programmed linear
search.

We often use cpu intrinsic functions - think crc32 - to rapidly
compute a hash code which has decent statistics.

Bihash Cookbook

Using current (key,value) template instance types

It’s quite easy to use one of the template instance types. As of this
writing, …/src/vppinfra provides pre-built templates for 8, 16, 20,
24, 40, and 48 byte keys, u8 * vector keys, and 8 byte values.

See …/src/vppinfra/{bihash_<key-size>_8}.h

To define the data types, #include a specific template instance, most
often in a subsystem header file:

 #include <vppinfra/bihash_8_8.h>

If you’re building a standalone application, you’ll need to define the
various functions by #including the method implementation file in a C
source file.

The core vpp engine currently uses most if not all of the known bihash
types, so you probably won’t need to #include the method
implementation file.

 #include <vppinfra/bihash_template.c>

Add an instance of the selected bihash data structure to e.g. a
“main_t” structure:

 typedef struct
 {
 ...
 BVT (clib_bihash) hash;
 or
 clib_bihash_8_8_t hash;
 ...
 } my_main_t;

The BV macro concatenate its argument with the value of the
preprocessor symbol BIHASH_TYPE. The BVT macro concatenates its
argument with the value of BIHASH_TYPE and the fixed-string “_t”. So
in the above example, BVT (clib_bihash) generates “clib_bihash_8_8_t”.

If you’re sure you won’t decide to change the template / type name
later, it’s perfectly OK to code “clib_bihash_8_8_t” and so forth.

In fact, if you #include multiple template instances in a single
source file, you must use fully-enumerated type names. The macros
stand no chance of working.

Initializing a bihash table

Call the init function as shown. As a rough guide, pick a number of
buckets which is approximately
number_of_expected_records/BIHASH_KVP_PER_PAGE from the relevant
template instance header-file. See previous discussion.

The amount of memory selected should easily contain all of the
records, with a generous allowance for hash collisions. Bihash memory
is allocated separately from the main heap, and won’t cost anything
except kernel PTE’s until touched, so it’s OK to be reasonably
generous.

For example:

 my_main_t *mm = &my_main;
 clib_bihash_8_8_t *h;

 h = &mm->hash_table;

 clib_bihash_init_8_8 (h, "test", (u32) number_of_buckets,
 (uword) memory_size);

Add or delete a key/value pair

Use BV(clib_bihash_add_del), or the explicit type variant:

 clib_bihash_kv_8_8_t kv;
 clib_bihash_8_8_t * h;
 my_main_t *mm = &my_main;
 clib_bihash_8_8_t *h;

 h = &mm->hash_table;
 kv.key = key_to_add_or_delete;
 kv.value = value_to_add_or_delete;

 clib_bihash_add_del_8_8 (h, &kv, is_add /* 1=add, 0=delete */);

In the delete case, kv.value is irrelevant. To change the value associated
with an existing (key,value) pair, simply re-add the [new] pair.

Simple search

The simplest possible (key, value) search goes like so:

 clib_bihash_kv_8_8_t search_kv, return_kv;
 clib_bihash_8_8_t * h;
 my_main_t *mm = &my_main;
 clib_bihash_8_8_t *h;

 h = &mm->hash_table;
 search_kv.key = key_to_add_or_delete;

 if (clib_bihash_search_8_8 (h, &search_kv, &return_kv) < 0)
 key_not_found()
 else
 key_not_found();

Note that it’s perfectly fine to collect the lookup result

 if (clib_bihash_search_8_8 (h, &search_kv, &search_kv))
 key_not_found();
 etc.

Bihash vector processing

When processing a vector of packets which need a certain lookup
performed, it’s worth the trouble to compute the key hash, and
prefetch the correct bucket ahead of time.

Here’s a sketch of one way to write the required code:

Dual-loop:

	6 packets ahead, prefetch 2x vlib_buffer_t’s and 2x packet data
required to form the record keys

	4 packets ahead, form 2x record keys and call BV(clib_bihash_hash)
or the explicit hash function to calculate the record hashes.
Call 2x BV(clib_bihash_prefetch_bucket) to prefetch the buckets

	2 packets ahead, call 2x BV(clib_bihash_prefetch_data) to prefetch
2x (key,value) data pages.

	In the processing section, call 2x BV(clib_bihash_search_inline_with_hash)
to perform the search

Programmer’s choice whether to stash the hash code somewhere in
vnet_buffer(b) metadata, or to use local variables.

Single-loop:

	Use simple search as shown above.

Walking a bihash table

A fairly common scenario to build “show” commands involves walking a
bihash table. It’s simple enough:

 my_main_t *mm = &my_main;
 clib_bihash_8_8_t *h;
 void callback_fn (clib_bihash_kv_8_8_t *, void *);

 h = &mm->hash_table;

 BV(clib_bihash_foreach_key_value_pair) (h, callback_fn, (void *) arg);

To nobody’s great surprise: clib_bihash_foreach_key_value_pair
iterates across the entire table, calling callback_fn with active
entries.

Creating a new template instance

Creating a new template is easy. Use one of the existing templates as
a model, and make the obvious changes. The hash and key_compare
methods are performance-critical in multiple senses.

If the key compare method is slow, every lookup will be slow. If the
hash function is slow, same story. If the hash function has poor
statistical properties, space efficiency will suffer. In the limit, a
bad enough hash function will cause large portions of the table to
revert to linear search.

Use of the best available vector unit is well worth the trouble in the
hash and key_compare functions.

 Use Cases

Use Cases

This chapter contains a sample of the many ways FD.io VPP can be used. It is by no means an
extensive list, but should give a sampling of the many features contained in FD.io VPP.

	FD.io VPP with Virtual Machines
	Prerequisites

	Topology

	Creating The Virtual Interface

	Creating the Virtual Machine

	Bridge the Interfaces

	Bring the Interfaces Up

	Ping from the VM

	Cleanup

	The XML File

	Using VPP as a Home Gateway
	Configuration files

	Patches

	Using the temporal mac filter plugin

	vSwitch/vRouter
	FD.io VPP as a vSwitch/vRouter

 FD.io VPP with Virtual Machines

FD.io VPP with Virtual Machines

This chapter will describe how to use FD.io VPP with virtual machines. We describe
how to create Vhost port with VPP and how to connect them to VPP. We will also discuss
the limitations of Vhost.

	Prerequisites

	Topology

	Creating The Virtual Interface

	Creating the Virtual Machine

	Bridge the Interfaces

	Bring the Interfaces Up

	Ping from the VM

	Cleanup

	The XML File

 Prerequisites

Prerequisites

For this use case we will assume FD.io VPP is installed. We will also assume the user can create and start
basic virtual machines. This use case will use the linux virsh commands. For more information on virsh
refer to virsh man page [https://linux.die.net/man/1/virsh].

The image that we use is based on an Ubuntu cloud image downloaded from:
Ubuntu Cloud Images [https://cloud-images.ubuntu.com/xenial/current].

All FD.io VPP commands are being run from a su shell.

Topology

In this case we will use 2 systems. One system we will be running standard linux, the other will
be running FD.io VPP.

[image:]
Vhost Use Case Topology

Creating The Virtual Interface

We will start on the system running FD.io VPP and show that no Virtual interfaces have been created.
We do this using the Show Interface command.

Notice we do not have any virtual interfaces. We do have an interface (TenGigabitEthernet86/0/0) that
is up. This interface is connected to a system running, in our example standard linux. We will use
this system to verify our connectivity to our VM with ping.

$ sudo bash
vppctl
 _______ _ _ _____ ___
 __/ __/ _ \ (_)__ | | / / _ \/ _ \
 _/ _// // / / / _ \ | |/ / ___/ ___/
 /_/ /____(_)_/___/ |___/_/ /_/

vpp# clear interfaces
vpp# show int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up
TenGigabitEthernet86/0/1 2 down
local0 0 down
vpp#

For more information on the interface commands refer to: Interface Commands

The next step will be to create the virtual port using the Create Vhost-User command.
This command will create the virtual port in VPP and create a linux socket that the VM will
use to connect to VPP.

The port can be created using VPP as the socket server or client.

Creating the VPP port:

vpp# create vhost socket /tmp/vm00.sock
VirtualEthernet0/0/0
vpp# show int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 down
local0 0 down
vpp#

Notice the interface VirtualEthernet0/0/0. In this example we created the virtual interface as
a client.

We can get more detail on the vhost connection with the Show Vhost-User command.

vpp# show vhost
Virtio vhost-user interfaces
Global:
 coalesce frames 32 time 1e-3
 number of rx virtqueues in interrupt mode: 0
Interface: VirtualEthernet0/0/0 (ifindex 3)
virtio_net_hdr_sz 12
 features mask (0xffffffffffffffff):
 features (0x58208000):
 VIRTIO_NET_F_MRG_RXBUF (15)
 VIRTIO_NET_F_GUEST_ANNOUNCE (21)
 VIRTIO_F_ANY_LAYOUT (27)
 VIRTIO_F_INDIRECT_DESC (28)
 VHOST_USER_F_PROTOCOL_FEATURES (30)
 protocol features (0x3)
 VHOST_USER_PROTOCOL_F_MQ (0)
 VHOST_USER_PROTOCOL_F_LOG_SHMFD (1)

 socket filename /tmp/vm00.sock type client errno "No such file or directory"

 rx placement:
 tx placement: spin-lock
 thread 0 on vring 0
 thread 1 on vring 0

 Memory regions (total 0)

Notice No such file or directory and Memory regions (total 0). This is because the
VM has not been created yet.

 Creating the Virtual Machine

Creating the Virtual Machine

We will now create the virtual machine. We use the “virsh create command”. For the complete file we
use refer to An XML File.

It is important to note that in the XML file we specify the socket path that is used to connect to
FD.io VPP.

This is done with a section that looks like this

<interface type='vhostuser'>
 <mac address='52:54:00:4c:47:f2'/>
 <source type='unix' path='/tmp//vm00.sock' mode='server'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
</interface>

Notice the interface type and the path to the socket.

Now we create the VM. The virsh list command shows the VMs that have been created. We start with no VMs.

$ virsh list
Id Name State
--

Create the VM with the virsh create command specifying our xml file.

$ virsh create ./iperf3-vm.xml
Domain iperf-server3 created from ./iperf3-vm.xml

$ virsh list
Id Name State
--
65 iperf-server3 running

The VM is now created.

Note

After a VM is created an xml file can created with “virsh dumpxml”.

$ virsh dumpxml iperf-server3
<domain type='kvm' id='65'>
 <name>iperf-server3</name>
 <uuid>e23d37c1-10c3-4a6e-ae99-f315a4165641</uuid>
 <memory unit='KiB'>262144</memory>
.....

Once the virtual machine is created notice the socket filename shows Success and
there are Memory Regions. At this point the VM and FD.io VPP are connected. Also
notice qsz 256. This system is running an older version of qemu. A queue size of 256
will affect vhost throughput. The qsz should be 1024. On the web you should be able to
find ways to install a newer version of qemu or change the queue size.

vpp# show vhost
Virtio vhost-user interfaces
Global:
 coalesce frames 32 time 1e-3
 number of rx virtqueues in interrupt mode: 0
Interface: VirtualEthernet0/0/0 (ifindex 3)
virtio_net_hdr_sz 12
 features mask (0xffffffffffffffff):
 features (0x58208000):
 VIRTIO_NET_F_MRG_RXBUF (15)
 VIRTIO_NET_F_GUEST_ANNOUNCE (21)
 VIRTIO_F_ANY_LAYOUT (27)
 VIRTIO_F_INDIRECT_DESC (28)
 VHOST_USER_F_PROTOCOL_FEATURES (30)
 protocol features (0x3)
 VHOST_USER_PROTOCOL_F_MQ (0)
 VHOST_USER_PROTOCOL_F_LOG_SHMFD (1)

 socket filename /tmp/vm00.sock type client errno "Success"

 rx placement:
 thread 1 on vring 1, polling
 tx placement: spin-lock
 thread 0 on vring 0
 thread 1 on vring 0

 Memory regions (total 2)
 region fd guest_phys_addr memory_size userspace_addr mmap_offset mmap_addr
 ====== ===== ================== ================== ================== ================== =============== ===
 0 31 0x0000000000000000 0x00000000000a0000 0x00007f1db9c00000 0x0000000000000000 0x00007f7db0400 000
 1 32 0x00000000000c0000 0x000000000ff40000 0x00007f1db9cc0000 0x00000000000c0000 0x00007f7d94ec0 000

 Virtqueue 0 (TX)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 0 avail.idx 256 used.flags 1 used.idx 0
 kickfd 33 callfd 34 errfd -1

 Virtqueue 1 (RX)
 qsz 256 last_avail_idx 8 last_used_idx 8
 avail.flags 0 avail.idx 8 used.flags 1 used.idx 8
 kickfd 29 callfd 35 errfd -1

 Bridge the Interfaces

Bridge the Interfaces

To connect the 2 interfaces we put them on an L2 bridge.

Use the “set interface l2 bridge” command.

vpp# set interface l2 bridge VirtualEthernet0/0/0 100
vpp# set interface l2 bridge TenGigabitEthernet86/0/0 100
vpp# show bridge
 BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
 100 1 0 off on on on on off N/A
vpp# show bridge 100 det
 BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
 100 1 0 off on on on on off N/A

 Interface If-idx ISN SHG BVI TxFlood VLAN-Tag-Rewrite
 VirtualEthernet0/0/0 3 1 0 - * none
 TenGigabitEthernet86/0/0 1 1 0 - * none
vpp# show vhost

Bring the Interfaces Up

We can now bring all the pertinent interfaces up. We can then we will then be able to communicate
with the VM from the remote system running Linux.

Bring the interfaces up with Set Interface State command.

vpp# set interface state VirtualEthernet0/0/0 up
vpp# set interface state TenGigabitEthernet86/0/0 up
vpp# sh int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 2
 rx bytes 180
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up tx packets 2
 tx bytes 180
local0 0 down

Ping from the VM

The remote Linux system has an ip address of “10.0.0.2” we can now reach it from the VM.

Use the “virsh console” command to attach to the VM. “ctrl-D” to exit.

$ virsh console iperf-server3
Connected to domain iperf-server3
Escape character is ^]

Ubuntu 16.04.3 LTS iperfvm ttyS0
.....

root@iperfvm:~# ping 10.0.0.2
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.285 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.154 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.159 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.208 ms

On VPP you can now see the packet counts increasing. The packets from the VM are seen as rx packets
on VirtualEthernet0/0/0, they are then bridged to TenGigabitEthernet86/0/0 and are seen leaving the
system as tx packets. The reverse is true on the way in.

vpp# sh int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 16
 rx bytes 1476
 tx packets 14
 tx bytes 1260
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 14
 rx bytes 1260
 tx packets 16
 tx bytes 1476
local0 0 down
vpp#

 Cleanup

Cleanup

Destroy the VMs with “virsh destroy”

cto@tf-ucs-3:~$ virsh list
 Id Name State
--
 65 iperf-server3 running

cto@tf-ucs-3:~$ virsh destroy iperf-server3
Domain iperf-server3 destroyed

Delete the Virtual port in FD.io VPP

vpp# delete vhost-user VirtualEthernet0/0/0
vpp# show int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 21
 rx bytes 1928
 tx packets 19
 tx bytes 1694
TenGigabitEthernet86/0/1 2 down
local0 0 down

Restart FD.io VPP

service vpp restart
vppctl show int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 down
TenGigabitEthernet86/0/1 2 down
local0 0 down

 The XML File

The XML File

An example of a file that could be used with the virsh create command.

<domain type='kvm' id='54'>
 <name>iperf-server</name>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <memoryBacking>
 <hugepages>
 <page size='2048' unit='KiB'/>
 </hugepages>
 </memoryBacking>
 <vcpu placement='static'>1</vcpu>
 <resource>
 <partition>/machine</partition>
 </resource>
 <os>
 <type arch='x86_64' machine='pc-i440fx-xenial'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 </features>
 <cpu mode='host-model'>
 <model fallback='allow'></model>
 <numa>
 <cell id='0' cpus='0' memory='262144' unit='KiB' memAccess='shared'/>
 </numa>
 </cpu>
 <clock offset='utc'>
 <timer name='rtc' tickpolicy='catchup'/>
 <timer name='pit' tickpolicy='delay'/>
 <timer name='hpet' present='no'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <pm>
 <suspend-to-mem enabled='no'/>
 <suspend-to-disk enabled='no'/>
 </pm>
 <devices>
 <emulator>/usr/bin/kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/tmp/xenial-mod.img'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
 </disk>
 <disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/scratch/jdenisco/sae/configs/cloud-config.iso'/>
 <backingStore/>
 <target dev='hda' bus='ide'/>
 <readonly/>
 <alias name='ide0-0-0'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </disk>
 <controller type='usb' index='0' model='ich9-ehci1'>
 <alias name='usb'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x7'/>
 </controller>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <controller type='ide' index='0'>
 <alias name='ide'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
 </controller>
 <controller type='virtio-serial' index='0'>
 <alias name='virtio-serial0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </controller>
 <interface type='vhostuser'>
 <mac address='52:54:00:4c:47:f2'/>
 <source type='unix' path='/tmp//vm00.sock' mode='server'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/2'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/2'>
 <source path='/dev/pts/2'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
 <graphics type='vnc' port='5900' autoport='yes' listen='127.0.0.1'>
 <listen type='address' address='127.0.0.1'/>
 </graphics>
 <memballoon model='virtio'>
 <alias name='balloon0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/>
 </memballoon>
 </devices>
 <seclabel type='dynamic' model='apparmor' relabel='yes'>
 <label>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</label>
 <imagelabel>libvirt-2c4c9317-c7a5-4b37-b789-386ccda7348a</imagelabel>
 </seclabel>
</domain>

 Using VPP as a Home Gateway

Using VPP as a Home Gateway

Vpp running on a small system (with appropriate NICs) makes a fine
home gateway. The resulting system performs far in excess of
requirements: a TAG=vpp_debug image runs at a vector size of ~1.1
terminating a 90-mbit down / 10-mbit up cable modem connection.

At a minimum, install sshd and the isc-dhcp-server. If you prefer, you
can use dnsmasq.

Configuration files

/etc/vpp/startup.conf:

unix {
 nodaemon
 log /var/log/vpp/vpp.log
 full-coredump
 cli-listen /run/vpp/cli.sock
 startup-config /setup.gate
 gid vpp
}
api-segment {
 gid vpp
}
dpdk {
 dev 0000:03:00.0
 dev 0000:14:00.0
 etc.
 poll-sleep 10
}

isc-dhcp-server configuration:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.10 192.168.1.99;
 option routers 192.168.1.1;
 option domain-name-servers 8.8.8.8;
}

If you decide to enable the vpp dns name resolver, substitute
192.168.1.2 for 8.8.8.8 in the dhcp server configuration.

/etc/ssh/sshd_config:

What ports, IPs and protocols we listen for
Port <REDACTED-high-number-port>
Change to no to disable tunnelled clear text passwords
PasswordAuthentication no

For your own comfort and safety, do NOT allow password authentication
and do not answer ssh requests on port 22. Experience shows several
hack attempts per hour on port 22, but none (ever) on random
high-number ports.

vpp configuration:

comment { This is the WAN interface }
set int state GigabitEthernet3/0/0 up
comment { set int mac address GigabitEthernet3/0/0 mac-to-clone-if-needed }
set dhcp client intfc GigabitEthernet3/0/0 hostname vppgate

comment { Create a BVI loopback interface}
loop create
set int l2 bridge loop0 1 bvi
set int ip address loop0 192.168.1.1/24
set int state loop0 up

comment { Add more inside interfaces as needed ... }
set int l2 bridge GigabitEthernet0/14/0 1
set int state GigabitEthernet0/14/0 up

comment { dhcp server and host-stack access }
tap connect lstack address 192.168.1.2/24
set int l2 bridge tapcli-0 1
set int state tapcli-0 up

comment { Configure NAT}
nat44 add interface address GigabitEthernet3/0/0
set interface nat44 in loop0 out GigabitEthernet3/0/0

comment { allow inbound ssh to the <REDACTED-high-number-port>
nat44 add static mapping local 192.168.1.2 <REDACTED> external GigabitEthernet3/0/0 <REDACTED> tcp

comment { if you want to use the vpp DNS server, add the following }
comment { Remember to adjust the isc-dhcp-server configuration appropriately }
comment { nat44 add identity mapping external GigabitEthernet3/0/0 udp 53053 }
comment { bin dns_name_server_add_del 8.8.8.8 }
comment { bin dns_name_server_add_del 68.87.74.166 }
comment { bin dns_enable_disable }
comment { see patch below, which adds these commands }
service restart isc-dhcp-server
add default linux route via 192.168.1.1

Patches

You’ll need this patch to add the “service restart” and “add default
linux route” commands:

diff --git a/src/vpp/vnet/main.c b/src/vpp/vnet/main.c
index 6e136e19..69189c93 100644
--- a/src/vpp/vnet/main.c
+++ b/src/vpp/vnet/main.c
@@ -18,6 +18,8 @@
 #include <vlib/unix/unix.h>
 #include <vnet/plugin/plugin.h>
 #include <vnet/ethernet/ethernet.h>
+#include <vnet/ip/ip4_packet.h>
+#include <vnet/ip/format.h>
 #include <vpp/app/version.h>
 #include <vpp/api/vpe_msg_enum.h>
 #include <limits.h>
@@ -400,6 +402,63 @@ VLIB_CLI_COMMAND (test_crash_command, static) = {

 #endif

+static clib_error_t *
+restart_isc_dhcp_server_command_fn (vlib_main_t * vm,
+ unformat_input_t * input,
+ vlib_cli_command_t * cmd)
+{
+ int rv __attribute__((unused));
+ /* Wait three seconds... */
+ vlib_process_suspend (vm, 3.0);
+
+ rv = system ("/usr/sbin/service isc-dhcp-server restart");
+
+ vlib_cli_output (vm, "Restarted the isc-dhcp-server...");
+ return 0;
+}
+
+/* *INDENT-OFF* */
+VLIB_CLI_COMMAND (restart_isc_dhcp_server_command, static) = {
+ .path = "service restart isc-dhcp-server",
+ .short_help = "restarts the isc-dhcp-server",
+ .function = restart_isc_dhcp_server_command_fn,
+};
+/* *INDENT-ON* */
+
+static clib_error_t *
+add_default_linux_route_command_fn (vlib_main_t * vm,
+ unformat_input_t * input,
+ vlib_cli_command_t * c)
+{
+ int rv __attribute__((unused));
+ ip4_address_t ip4_addr;
+ u8 *cmd;
+
+ if (!unformat (input, "%U", unformat_ip4_address, &ip4_addr))
+ return clib_error_return (0, "default gateway address required...");
+
+ cmd = format (0, "/sbin/route add -net 0.0.0.0/0 gw %U",
+ format_ip4_address, &ip4_addr);
+ vec_add1 (cmd, 0);
+
+ rv = system (cmd);
+
+ vlib_cli_output (vm, "%s", cmd);
+
+ vec_free(cmd);
+
+ return 0;
+}
+
+/* *INDENT-OFF* */
+VLIB_CLI_COMMAND (add_default_linux_route_command, static) = {
+ .path = "add default linux route via",
+ .short_help = "Adds default linux route: 0.0.0.0/0 via <addr>",
+ .function = add_default_linux_route_command_fn,
+};
+/* *INDENT-ON* */
+
+

Using the temporal mac filter plugin

If you need to restrict network access for certain devices to specific
daily time ranges, configure the “mactime” plugin. Enable the feature
on the NAT “inside” interfaces:

bin mactime_enable_disable GigabitEthernet0/14/0
bin mactime_enable_disable GigabitEthernet0/14/1
...

Create the required src-mac-address rule database. There are 4 rule
entry types:

	allow-static - pass traffic from this mac address

	drop-static - drop traffic from this mac address

	allow-range - pass traffic from this mac address at specific times

	drop-range - drop traffic from this mac address at specific times

Here are some examples:

bin mactime_add_del_range name alarm-system mac 00:de:ad:be:ef:00 allow-static
bin mactime_add_del_range name unwelcome mac 00:de:ad:be:ef:01 drop-static
bin mactime_add_del_range name not-during-business-hours mac <mac> drop-range Mon - Fri 7:59 - 18:01
bin mactime_add_del_range name monday-busines-hours mac <mac> allow-range Mon 7:59 - 18:01

 vSwitch/vRouter

vSwitch/vRouter

FD.io VPP as a vSwitch/vRouter

Note

We need to provide commands and and show how to use VPP as a vSwitch/vRouter

One of the use cases for the FD.io VPP platform is to implement it as a
virtual switch or router. The following section describes examples of
possible implementations that can be created with the FD.io VPP platform. For
more in depth descriptions about other possible use cases, see the list
of

[image: Figure: Linux host as a vSwitch]
Figure: Linux host as a vSwitch

You can use the FD.io VPP platform to create out-of-the-box virtual switches
(vSwitch) and virtual routers (vRouter). The FD.io VPP platform allows you to
manage certain functions and configurations of these application through
a command-line interface (CLI).

Some of the functionality that a switching application can create
includes:

	Bridge Domains

	Ports (including tunnel ports)

	Connect ports to bridge domains

	Program ARP termination

Some of the functionality that a routing application can create
includes:

	Virtual Routing and Forwarding (VRF) tables (in the thousands)

	Routes (in the millions)

 Troubleshooting

Troubleshooting

This chapter describes some of the many techniques used to troubleshoot and diagnose
problem with FD.io VPP implementations.

	CPU Load/Usage
	Linux top/htop

	VPP Memory Usage

	VPP CPU Load

 CPU Load/Usage

CPU Load/Usage

There are various commands and tools that can help users see FD.io VPP CPU and memory usage at runtime.

Linux top/htop

The Linux top and htop are decent tools to look at FD.io VPP cpu and memory usage, but they will only show
preallocated memory and total CPU usage. These commands can be useful to show which cores VPP is running on.

This is an example of VPP instance that is running on cores 8 and 9. For this output type top and then
type 1 when the tool starts.

$ top

top - 11:04:04 up 35 days, 3:16, 5 users, load average: 2.33, 2.23, 2.16
Tasks: 435 total, 2 running, 432 sleeping, 1 stopped, 0 zombie
%Cpu0 : 1.0 us, 0.7 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
%Cpu1 : 2.0 us, 0.3 sy, 0.0 ni, 97.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 0.7 us, 1.0 sy, 0.0 ni, 98.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 1.7 us, 0.7 sy, 0.0 ni, 97.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu4 : 2.0 us, 0.7 sy, 0.0 ni, 97.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu5 : 3.0 us, 0.3 sy, 0.0 ni, 96.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 : 2.3 us, 0.7 sy, 0.0 ni, 97.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 : 2.6 us, 0.3 sy, 0.0 ni, 97.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu8 : 96.0 us, 0.3 sy, 0.0 ni, 3.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu9 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu10 : 1.0 us, 0.3 sy, 0.0 ni, 98.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
....

VPP Memory Usage

For details on VPP memory usage you can use the show memory command

This is the example VPP memory usage on 2 cores.

vppctl show memory verbose
Thread 0 vpp_main
22043 objects, 17878k of 20826k used, 2426k free, 2396k reclaimed, 346k overhead, 1048572k capacity
 alloc. from small object cache: 22875 hits 39973 attempts (57.23%) replacements 5143
 alloc. from free-list: 44732 attempts, 26017 hits (58.16%), 528461 considered (per-attempt 11.81)
 alloc. from vector-expand: 3430
 allocs: 52324 2027.84 clocks/call
 frees: 30280 594.38 clocks/call
Thread 1 vpp_wk_0
22043 objects, 17878k of 20826k used, 2427k free, 2396k reclaimed, 346k overhead, 1048572k capacity
 alloc. from small object cache: 22881 hits 39984 attempts (57.23%) replacements 5148
 alloc. from free-list: 44736 attempts, 26021 hits (58.17%), 528465 considered (per-attempt 11.81)
 alloc. from vector-expand: 3430
 allocs: 52335 2027.54 clocks/call
 frees: 30291 594.36 clocks/call

VPP CPU Load

To find the VPP CPU load or how busy VPP is use the show runtime command.

With at least one interface in polling mode, the VPP CPU utilization is always 100%.

A good indicator of CPU load is “average vectors/node”. A bigger number means VPP
is more busy but also more efficient. The Maximum value is 255 (unless you change VLIB_FRAME_SIZE in code).
It basically means how many packets are processed in batch.

If VPP is not loaded it will likely poll so fast that it will just get one or few
packets from the rx queue. This is the case shown below on Thread 1. As load goes up vpp
will have more work to do, so it will poll less frequently, and that will result in more
packets waiting in rx queue. More packets will result in more efficient execution of the
code so number of clock cycles / packet will go down. When “average vectors/node” goes up
close to 255, you will likely start observing rx queue tail drops.

vppctl show run
Thread 0 vpp_main (lcore 8)
Time 6152.9, average vectors/node 0.00, last 128 main loops 0.00 per node 0.00
 vector rates in 0.0000e0, out 0.0000e0, drop 0.0000e0, punt 0.0000e0
 Name State Calls Vectors Suspends Clocks Vectors/Call
acl-plugin-fa-cleaner-process event wait 0 0 1 3.66e4 0.00
admin-up-down-process event wait 0 0 1 2.54e3 0.00
....

Thread 1 vpp_wk_0 (lcore 9)
Time 6152.9, average vectors/node 1.00, last 128 main loops 0.00 per node 0.00
 vector rates in 1.3073e2, out 1.3073e2, drop 6.5009e-4, punt 0.0000e0
 Name State Calls Vectors Suspends Clocks Vectors/Call
TenGigabitEthernet86/0/0-outpu active 804395 804395 0 6.17e2 1.00
TenGigabitEthernet86/0/0-tx active 804395 804395 0 7.29e2 1.00
arp-input active 2 2 0 3.82e4 1.00
dpdk-input polling 24239296364 804398 0 1.59e7 0.00
error-drop active 4 4 0 4.65e3 1.00
ethernet-input active 2 2 0 1.08e4 1.00
interface-output active 1 1 0 3.78e3 1.00
ip4-glean active 1 1 0 6.98e4 1.00
ip4-icmp-echo-request active 804394 804394 0 5.02e2 1.00
ip4-icmp-input active 804394 804394 0 4.63e2 1.00
ip4-input-no-checksum active 804394 804394 0 8.51e2 1.00
ip4-load-balance active 804394 804394 0 5.46e2 1.00
ip4-local active 804394 804394 0 5.79e2 1.00
ip4-lookup active 804394 804394 0 5.71e2 1.00
ip4-rewrite active 804393 804393 0 5.69e2 1.00
ip6-input active 2 2 0 5.72e3 1.00
ip6-not-enabled active 2 2 0 1.56e4 1.00
unix-epoll-input polling 835722 0 0 3.03e-3 0.00

 User Guides

User Guides

	Progressive VPP Tutorial
	Introduction

	Exercise: Setting up your environment

	Vagrant Set Up
	Action: Install Virtualbox

	Action: Install Vagrant

	Action: Create a Vagrant Directory

	Create a Vagrantfile

	Action: Vagrant Up

	Action: ssh to Vagrant VM

	Exercise: Install VPP

	Exercise: VPP basics

	VPP command learned in this exercise

	Action: Remove dpdk plugin

	Action: Run VPP

	Action: Send commands to VPP using vppctl

	Action: Start a VPP shell using vppctl

	Exercise: Create an interface
	Skills to be Learned

	VPP command learned in this exercise
	Topology

	Initial State

	Action: Create veth interfaces on host

	Action: Create vpp host- interface

	Action: Add trace

	Action: Ping from host to vpp

	Action: Examine Trace of ping from host to vpp

	Action: Clear trace buffer

	Action: ping from vpp to host

	Action: Examine Trace of ping from vpp to host

	Action: Examine arp tables

	Action: Examine routing table

	Exercise: Connecting two vpp instances
	Background

	Skills to be Learned

	Topology

	Initial state

	Action: Running a second vpp instances

	Action: Create memif interface on vpp1

	Action: Create memif interface on vpp2

	Action: Ping from vpp1 to vpp2

	Exercise: Routing
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial State

	Action: Setup host route

	Setup return route on vpp2

	Ping from host through vpp1 to vpp2

	Exercise: Switching
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Run vpp instances

	Action: Connect vpp1 to host

	Action: Connect vpp1 to vpp2

	Action: Configure Bridge Domain on vpp1

	Action: Configure loopback interface on vpp2

	Action: Configure bridge domain on vpp2

	Action: Ping from host to vpp and vpp to host

	Action: Examine l2 fib

	Source NAT
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Install vpp-plugins

	Action: Create vpp instance

	Action: Create veth interfaces

	Action: Configure vpp outside interface

	Action: Configure snat

	Action: Prepare to Observe Snat

	Action: Ping via snat

	Action: Confirm snat

	API User Guides
	Downloading the jvpp jar
	Getting jvpp jar

	Getting jvpp via maven

 Progressive VPP Tutorial

Progressive VPP Tutorial

	Introduction

	Exercise: Setting up your environment

	Vagrant Set Up
	Action: Install Virtualbox

	Action: Install Vagrant

	Action: Create a Vagrant Directory

	Create a Vagrantfile

	Action: Vagrant Up

	Action: ssh to Vagrant VM

	Exercise: Install VPP

	Exercise: VPP basics

	VPP command learned in this exercise

	Action: Remove dpdk plugin

	Action: Run VPP

	Action: Send commands to VPP using vppctl

	Action: Start a VPP shell using vppctl

	Exercise: Create an interface
	Skills to be Learned

	VPP command learned in this exercise
	Topology

	Initial State

	Action: Create veth interfaces on host

	Action: Create vpp host- interface

	Action: Add trace

	Action: Ping from host to vpp

	Action: Examine Trace of ping from host to vpp

	Action: Clear trace buffer

	Action: ping from vpp to host

	Action: Examine Trace of ping from vpp to host

	Action: Examine arp tables

	Action: Examine routing table

	Exercise: Connecting two vpp instances
	Background

	Skills to be Learned

	Topology

	Initial state

	Action: Running a second vpp instances

	Action: Create memif interface on vpp1

	Action: Create memif interface on vpp2

	Action: Ping from vpp1 to vpp2

	Exercise: Routing
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial State

	Action: Setup host route

	Setup return route on vpp2

	Ping from host through vpp1 to vpp2

	Exercise: Switching
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Run vpp instances

	Action: Connect vpp1 to host

	Action: Connect vpp1 to vpp2

	Action: Configure Bridge Domain on vpp1

	Action: Configure loopback interface on vpp2

	Action: Configure bridge domain on vpp2

	Action: Ping from host to vpp and vpp to host

	Action: Examine l2 fib

	Source NAT
	Skills to be Learned

	vpp command learned in this exercise

	Topology

	Initial state

	Action: Install vpp-plugins

	Action: Create vpp instance

	Action: Create veth interfaces

	Action: Configure vpp outside interface

	Action: Configure snat

	Action: Prepare to Observe Snat

	Action: Ping via snat

	Action: Confirm snat

 Introduction

Introduction

This tutorial is designed for you to be able to run it on a single Ubuntu 16.04 VM on your laptop.
It walks you through some very basic vpp senarios, with a focus on learning vpp commands, doing common actions,
and being able to discover common things about the state of a running vpp.

This is not intended to be a ‘how to run in a production environment’ set of instructions.

Exercise: Setting up your environment

All of these exercises are designed to be performed on an Ubuntu 16.04 (Xenial) box.

If you have an Ubuntu 16.04 box on which you have sudo, you can feel free to use that.

If you do not, a Vagrantfile is provided to setup a basic Ubuntu 16.04 box for you

Vagrant Set Up

Action: Install Virtualbox

If you do not already have virtualbox on your laptop (or if it is not up to date), please download and install it:

https://www.virtualbox.org/wiki/Downloads

Action: Install Vagrant

If you do not already have Vagrant on your laptop (or if it is not up to date), please download it:

https://www.vagrantup.com/downloads.html

Action: Create a Vagrant Directory

Create a directory on your laptop

mkdir fdio-tutorial
cd fdio-tutorial/

Create a Vagrantfile

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

config.vm.box = "puppetlabs/ubuntu-16.04-64-nocm"
config.vm.box_check_update = false

vmcpu=(ENV['VPP_VAGRANT_VMCPU'] || 2)
vmram=(ENV['VPP_VAGRANT_VMRAM'] || 4096)

config.ssh.forward_agent = true

config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--ioapic", "on"]
 vb.memory = "#{vmram}"
 vb.cpus = "#{vmcpu}"
 #support for the SSE4.x instruction is required in some versions of VB.
 vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.1", "1"]
 vb.customize ["setextradata", :id, "VBoxInternal/CPUM/SSE4.2", "1"]
end
end

Action: Vagrant Up

Bring up your Vagrant VM:

vagrant up

Action: ssh to Vagrant VM

vagrant ssh

Exercise: Install VPP

Skills to be Learned

	Learn how to install vpp binary packges using apt-get.

Follow the instructions at Installing VPP Binaries for installing xenial vpp packages from the release repo. Please note, certain aspects of this tutorial require vpp 17.10 or later.

Exercise: VPP basics

Skills to be Learned

By the end of the exercise you should be able to:

	Run a vpp instance in a mode which allows multiple vpp processes to run

	Issue vpp commands from the unix shell

	Run a vpp shell and issue it commands

VPP command learned in this exercise

	show ver [https://docs.fd.io/vpp/17.04/clicmd_src_vpp_app.html#clicmd_show_version]

Action: Remove dpdk plugin

In this tutorial, we will be running multiple vpp instances. DPDK does not work well with multiple instances, and so to run multiple instances we will need to disable the dpdk-plugin by removing it:

sudo rm -rf /usr/lib/vpp_plugins/dpdk_plugin.so

..how-to-run-vpp:

Action: Run VPP

VPP runs in userspace. In a production environment you will often run it with DPDK to connect to real NICs or vhost to connect to VMs.
In those circumstances you usually run a single instance of vpp.

For purposes of this tutorial, it is going to be extremely useful to run multiple instances of vpp, and connect them to each other to form
a topology. Fortunately, vpp supports this.

When running multiple vpp instances, each instance needs to have specified a ‘name’ or ‘prefix’. In the example below, the ‘name’ or ‘prefix’ is “vpp1”. Note that only one instance can use the dpdk plugin, since this plugin is trying to acquire a lock on a file.

sudo vpp unix {cli-listen /run/vpp/cli-vpp1.sock} api-segment { prefix vpp1 }

Example Output:

vlib_plugin_early_init:230: plugin path /usr/lib/vpp_plugins

Please note:

	“api-segment {prefix vpp1}” tells vpp how to name the files in /dev/shm/ for your vpp instance differently from the default.

	“unix {cli-listen /run/vpp/cli-vpp1.sock}” tells vpp to use a non-default socket file when being addressed by vppctl.

If you can’t see the vpp process running on the host, activate the nodaemon option to better understand what is happening

sudo vpp unix {nodaemon cli-listen /run/vpp/cli-vpp1.sock} api-segment { prefix vpp1 }

Example Output with errors from the dpdk plugin:

vlib_plugin_early_init:356: plugin path /usr/lib/vpp_plugins
load_one_plugin:184: Loaded plugin: acl_plugin.so (Access Control Lists)
load_one_plugin:184: Loaded plugin: dpdk_plugin.so (Data Plane Development Kit (DPDK))
load_one_plugin:184: Loaded plugin: flowprobe_plugin.so (Flow per Packet)
load_one_plugin:184: Loaded plugin: gtpu_plugin.so (GTPv1-U)
load_one_plugin:184: Loaded plugin: ila_plugin.so (Identifier-locator addressing for IPv6)
load_one_plugin:184: Loaded plugin: ioam_plugin.so (Inbound OAM)
load_one_plugin:114: Plugin disabled (default): ixge_plugin.so
load_one_plugin:184: Loaded plugin: kubeproxy_plugin.so (kube-proxy data plane)
load_one_plugin:184: Loaded plugin: l2e_plugin.so (L2 Emulation)
load_one_plugin:184: Loaded plugin: lb_plugin.so (Load Balancer)
load_one_plugin:184: Loaded plugin: libsixrd_plugin.so (IPv6 Rapid Deployment on IPv4 Infrastructure (RFC5969))
load_one_plugin:184: Loaded plugin: memif_plugin.so (Packet Memory Interface (experimetal))
load_one_plugin:184: Loaded plugin: nat_plugin.so (Network Address Translation)
load_one_plugin:184: Loaded plugin: pppoe_plugin.so (PPPoE)
load_one_plugin:184: Loaded plugin: stn_plugin.so (VPP Steals the NIC for Container integration)
vpp[10211]: vlib_pci_bind_to_uio: Skipping PCI device 0000:00:03.0 as host interface eth0 is up
vpp[10211]: vlib_pci_bind_to_uio: Skipping PCI device 0000:00:04.0 as host interface eth1 is up
vpp[10211]: dpdk_config:1240: EAL init args: -c 1 -n 4 --huge-dir /run/vpp/hugepages --file-prefix vpp -b 0000:00:03.0 -b 0000:00:04.0 --master-lcore 0 --socket-mem 64
EAL: No free hugepages reported in hugepages-1048576kB
EAL: Error - exiting with code: 1
Cause: Cannot create lock on '/var/run/.vpp_config'. Is another primary process running?

Action: Send commands to VPP using vppctl

You can send vpp commands with a utility called vppctl.

When running vppctl against a named version of vpp, you will need to run:

sudo vppctl -s /run/vpp/cli-${name}.sock ${cmd}

Note

/run/vpp/cli-${name}.sock

is the particular naming convention used in this tutorial. By default you can set vpp to use what ever socket file name you would like at startup (the default config file uses /run/vpp/cli.sock) if two different vpps are being run (as in this tutorial) you must use distinct socket files for each one.

So to run ‘show ver’ against the vpp instance named vpp1 you would run:

sudo vppctl -s /run/vpp/cli-vpp1.sock show ver

Output:

vpp v17.04-rc0~177-g006eb47 built by ubuntu on fdio-ubuntu1604-sevt at Mon Jan 30 18:30:12 UTC 2017

Action: Start a VPP shell using vppctl

You can also use vppctl to launch a vpp shell with which you can run multiple vpp commands interactively by running:

sudo vppctl -s /run/vpp/cli-${name}.sock

which will give you a command prompt.

Try doing show ver that way:

sudo vppctl -s /run/vpp/cli-vpp1.sock
vpp# show ver

Output:

vpp v17.04-rc0~177-g006eb47 built by ubuntu on fdio-ubuntu1604-sevt at Mon Jan 30 18:30:12 UTC 2017

vpp#

To exit the vppctl shell:

vpp# quit

Exercise: Create an interface

Skills to be Learned

	Create a veth interface in Linux host

	Assign an IP address to one end of the veth interface in the Linux host

	Create a vpp host-interface that connected to one end of a veth interface via AF_PACKET

	Add an ip address to a vpp interface

	Setup a ‘trace’

	View a ‘trace’

	Clear a ‘trace’

	Verify using ping from host

	Ping from vpp

	Examine Arp Table

	Examine ip fib

VPP command learned in this exercise

	create host-interface [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_devices_af_packet.html#clicmd_create_host-interface]

	set int state [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_set_interface_state]

	set int ip address [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_set_interface_ip_address]

	show hardware [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_hardware-interfaces]

	show int [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_interfaces]

	show int addr [https://docs.fd.io/vpp/17.04/clicmd_src_vnet.html#clicmd_show_interfaces]

	trace add [https://docs.fd.io/vpp/17.04/clicmd_src_vlib.html#clicmd_trace_add]

	clear trace [https://docs.fd.io/vpp/17.04/clicmd_src_vlib.html#clicmd_clear_trace]

	ping [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_ping]

	show ip arp [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ethernet.html#clicmd_show_ip_arp]

	show ip fib [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_fib.html#clicmd_show_ip_fib]

Topology

[image: Figure: Create Interface Topology]
Figure: Create Interface Topology

Initial State

The initial state here is presumed to be the final state from the
exercise VPP Basics

Action: Create veth interfaces on host

In Linux, there is a type of interface call ‘veth’. Think of a ‘veth’
interface as being an interface that has two ends to it (rather than
one).

Create a veth interface with one end named vpp1out and the other
named vpp1host

sudo ip link add name vpp1out type veth peer name vpp1host

Turn up both ends:

sudo ip link set dev vpp1out up
sudo ip link set dev vpp1host up

Assign an IP address

sudo ip addr add 10.10.1.1/24 dev vpp1host

Display the result:

sudo ip addr show vpp1host

Example Output:

10: vpp1host@vpp1out: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
 link/ether 5e:97:e3:41:aa:b8 brd ff:ff:ff:ff:ff:ff
 inet 10.10.1.1/24 scope global vpp1host
 valid_lft forever preferred_lft forever
 inet6 fe80::5c97:e3ff:fe41:aab8/64 scope link
 valid_lft forever preferred_lft forever

Action: Create vpp host- interface

Create a host interface attached to vpp1out.

sudo vppctl -s /run/vpp/cli-vpp1.sock create host-interface name vpp1out

Output:

host-vpp1out

Confirm the interface:

sudo vppctl -s /run/vpp/cli-vpp1.sock show hardware

Example Output:

 Name Idx Link Hardware
host-vpp1out 1 up host-vpp1out
 Ethernet address 02:fe:48:ec:d5:a7
 Linux PACKET socket interface
local0 0 down local0
 local

Turn up the interface:

sudo vppctl -s /run/vpp/cli-vpp1.sock set int state host-vpp1out up

Confirm the interface is up:

sudo vppctl -s /run/vpp/cli-vpp1.sock show int

 Name Idx State Counter Count
host-vpp1out 1 up
local0 0 down

Assign ip address 10.10.1.2/24

sudo vppctl -s /run/vpp/cli-vpp1.sock set int ip address host-vpp1out 10.10.1.2/24

Confirm the ip address is assigned:

sudo vppctl -s /run/vpp/cli-vpp1.sock show int addr

host-vpp1out (up):
 10.10.1.2/24
local0 (dn):

Action: Add trace

sudo vppctl -s /run/vpp/cli-vpp1.sock trace add af-packet-input 10

Action: Ping from host to vpp

ping -c 1 10.10.1.2

PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data.
64 bytes from 10.10.1.2: icmp_seq=1 ttl=64 time=0.557 ms

--- 10.10.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.557/0.557/0.557/0.000 ms

Action: Examine Trace of ping from host to vpp

sudo vppctl -s /run/vpp/cli-vpp1.sock show trace

------------------- Start of thread 0 vpp_main -------------------
Packet 1

00:09:30:397798: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 42 snaplen 42 mac 66 net 80
 sec 0x588fd3ac nsec 0x375abde7 vlan 0 vlan_tpid 0
00:09:30:397906: ethernet-input
 ARP: fa:13:55:ac:d9:50 -> ff:ff:ff:ff:ff:ff
00:09:30:397912: arp-input
 request, type ethernet/IP4, address size 6/4
 fa:13:55:ac:d9:50/10.10.1.1 -> 00:00:00:00:00:00/10.10.1.2
00:09:30:398191: host-vpp1out-output
 host-vpp1out
 ARP: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 reply, type ethernet/IP4, address size 6/4
 02:fe:48:ec:d5:a7/10.10.1.2 -> fa:13:55:ac:d9:50/10.10.1.1

Packet 2

00:09:30:398227: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd3ac nsec 0x37615060 vlan 0 vlan_tpid 0
00:09:30:398295: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:09:30:398298: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398300: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398303: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398305: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398307: ip4-icmp-echo-request
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x9b46
 fragment id 0x894c, flags DONT_FRAGMENT
 ICMP echo_request checksum 0x83c
00:09:30:398317: ip4-load-balance
 fib 0 dpo-idx 10 flow hash: 0x0000000e
 ICMP: 10.10.1.2 -> 10.10.1.1
 tos 0x00, ttl 64, length 84, checksum 0xbef3
 fragment id 0x659f, flags DONT_FRAGMENT
 ICMP echo_reply checksum 0x103c
00:09:30:398318: ip4-rewrite
 tx_sw_if_index 1 dpo-idx 2 : ipv4 via 10.10.1.1 host-vpp1out: IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50 flow hash: 0x00000000
 IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 ICMP: 10.10.1.2 -> 10.10.1.1
 tos 0x00, ttl 64, length 84, checksum 0xbef3
 fragment id 0x659f, flags DONT_FRAGMENT
 ICMP echo_reply checksum 0x103c
00:09:30:398320: host-vpp1out-output
 host-vpp1out
 IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 ICMP: 10.10.1.2 -> 10.10.1.1
 tos 0x00, ttl 64, length 84, checksum 0xbef3
 fragment id 0x659f, flags DONT_FRAGMENT
 ICMP echo_reply checksum 0x103c

Action: Clear trace buffer

sudo vppctl -s /run/vpp/cli-vpp1.sock clear trace

Action: ping from vpp to host

sudo vppctl -s /run/vpp/cli-vpp1.sock ping 10.10.1.1

64 bytes from 10.10.1.1: icmp_seq=1 ttl=64 time=.0865 ms
64 bytes from 10.10.1.1: icmp_seq=2 ttl=64 time=.0914 ms
64 bytes from 10.10.1.1: icmp_seq=3 ttl=64 time=.0943 ms
64 bytes from 10.10.1.1: icmp_seq=4 ttl=64 time=.0959 ms
64 bytes from 10.10.1.1: icmp_seq=5 ttl=64 time=.0858 ms

Statistics: 5 sent, 5 received, 0% packet loss

Action: Examine Trace of ping from vpp to host

sudo vppctl -s /run/vpp/cli-vpp1.sock show trace

------------------- Start of thread 0 vpp_main -------------------
Packet 1

00:12:47:155326: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd471 nsec 0x161c61ad vlan 0 vlan_tpid 0
00:12:47:155331: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:47:155334: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155335: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155336: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155339: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2604
 fragment id 0x3e8f
 ICMP echo_reply checksum 0x1a83
00:12:47:155342: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 1
00:12:47:155349: error-drop
 ip4-icmp-input: unknown type

Packet 2

00:12:48:155330: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd472 nsec 0x1603e95b vlan 0 vlan_tpid 0
00:12:48:155337: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:48:155341: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155343: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155344: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155346: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2565
 fragment id 0x3f2e
 ICMP echo_reply checksum 0x7405
00:12:48:155348: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 2
00:12:48:155351: error-drop
 ip4-icmp-input: unknown type

Packet 3

00:12:49:155331: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd473 nsec 0x15eb77ef vlan 0 vlan_tpid 0
00:12:49:155337: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:49:155341: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155343: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155345: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155349: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x249e
 fragment id 0x3ff5
 ICMP echo_reply checksum 0xf446
00:12:49:155350: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 3
00:12:49:155354: error-drop
 ip4-icmp-input: unknown type

Packet 4

00:12:50:155335: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd474 nsec 0x15d2ffb6 vlan 0 vlan_tpid 0
00:12:50:155341: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:50:155346: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155347: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155350: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155351: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x2437
 fragment id 0x405c
 ICMP echo_reply checksum 0x5b6e
00:12:50:155353: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 4
00:12:50:155356: error-drop
 ip4-icmp-input: unknown type

Packet 5

00:12:51:155324: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 98 snaplen 98 mac 66 net 80
 sec 0x588fd475 nsec 0x15ba8726 vlan 0 vlan_tpid 0
00:12:51:155331: ethernet-input
 IP4: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:51:155335: ip4-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155337: ip4-lookup
 fib 0 dpo-idx 5 flow hash: 0x00000000
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155338: ip4-local
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155341: ip4-icmp-input
 ICMP: 10.10.1.1 -> 10.10.1.2
 tos 0x00, ttl 64, length 84, checksum 0x23cc
 fragment id 0x40c7
 ICMP echo_reply checksum 0xedb3
00:12:51:155343: ip4-icmp-echo-reply
 ICMP echo id 17572 seq 5
00:12:51:155346: error-drop
 ip4-icmp-input: unknown type

Packet 6

00:12:52:175185: af-packet-input
 af_packet: hw_if_index 1 next-index 4
 tpacket2_hdr:
 status 0x20000001 len 42 snaplen 42 mac 66 net 80
 sec 0x588fd476 nsec 0x16d05dd0 vlan 0 vlan_tpid 0
00:12:52:175195: ethernet-input
 ARP: fa:13:55:ac:d9:50 -> 02:fe:48:ec:d5:a7
00:12:52:175200: arp-input
 request, type ethernet/IP4, address size 6/4
 fa:13:55:ac:d9:50/10.10.1.1 -> 00:00:00:00:00:00/10.10.1.2
00:12:52:175214: host-vpp1out-output
 host-vpp1out
 ARP: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
 reply, type ethernet/IP4, address size 6/4
 02:fe:48:ec:d5:a7/10.10.1.2 -> fa:13:55:ac:d9:50/10.10.1.1

After examinging the trace, clear it again.

Action: Examine arp tables

sudo vppctl -s /run/vpp/cli-vpp1.sock show ip arp

Time IP4 Flags Ethernet Interface
570.4092 10.10.1.1 D fa:13:55:ac:d9:50 host-vpp1out

Action: Examine routing table

sudo vppctl -s /run/vpp/cli-vpp1.sock show ip fib

ipv4-VRF:0, fib_index 0, flow hash: src dst sport dport proto
0.0.0.0/0
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:0 buckets:1 uRPF:0 to:[0:0]]
 [0] [@0]: dpo-drop ip4
0.0.0.0/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:1 buckets:1 uRPF:1 to:[0:0]]
 [0] [@0]: dpo-drop ip4
10.10.1.1/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:10 buckets:1 uRPF:9 to:[5:420] via:[1:84]]
 [0] [@5]: ipv4 via 10.10.1.1 host-vpp1out: IP4: 02:fe:48:ec:d5:a7 -> fa:13:55:ac:d9:50
10.10.1.0/24
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:8 buckets:1 uRPF:7 to:[0:0]]
 [0] [@4]: ipv4-glean: host-vpp1out
10.10.1.2/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:9 buckets:1 uRPF:8 to:[6:504]]
 [0] [@2]: dpo-receive: 10.10.1.2 on host-vpp1out
224.0.0.0/4
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:3 buckets:1 uRPF:3 to:[0:0]]
 [0] [@0]: dpo-drop ip4
240.0.0.0/4
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:2 buckets:1 uRPF:2 to:[0:0]]
 [0] [@0]: dpo-drop ip4
255.255.255.255/32
 unicast-ip4-chain
 [@0]: dpo-load-balance: [index:4 buckets:1 uRPF:4 to:[0:0]]
 [0] [@0]: dpo-drop ip4

Exercise: Connecting two vpp instances

Background

memif is a very high performance, direct memory interface type which can
be used between vpp instances to form a topology. It uses a file socket
for a control channel to set up that shared memory.

Skills to be Learned

You will learn the following new skill in this exercise:

	Create a memif interface between two vpp instances

You should be able to perform this exercise with the following skills
learned in previous exercises:

	Run a second vpp instance

	Add an ip address to a vpp interface

	Ping from vpp

Topology

[image: Connect two vpp topolgy]
Connect two vpp topolgy

Initial state

The initial state here is presumed to be the final state from the
exercise Create an
Interface

Action: Running a second vpp instances

You should already have a vpp instance running named: vpp1.

Run a second vpp instance named: vpp2.

Action: Create memif interface on vpp1

Create a memif interface on vpp1:

sudo vppctl -s /run/vpp/cli-vpp1.sock create memif id 0 master

This will create an interface on vpp1 memif0/0 using /run/vpp/memif as
its socket file. The role of vpp1 for this memif inteface is ‘master’.

Use your previously used skills to:

	Set the memif0/0 state to up.

	Assign IP address 10.10.2.1/24 to memif0/0

	Examine memif0/0 via show commands

Action: Create memif interface on vpp2

We want vpp2 to pick up the ‘slave’ role using the same
run/vpp/memif-vpp1vpp2 socket file

sudo vppctl -s /run/vpp/cli-vpp2.sock create memif id 0 slave

This will create an interface on vpp2 memif0/0 using /run/vpp/memif as
its socket file. The role of vpp1 for this memif inteface is ‘slave’.

Use your previously used skills to:

	Set the memif0/0 state to up.

	Assign IP address 10.10.2.2/24 to memif0/0

	Examine memif0/0 via show commands

Action: Ping from vpp1 to vpp2

Ping 10.10.2.2 from vpp1

Ping 10.10.2.1 from vpp2

Exercise: Routing

Skills to be Learned

In this exercise you will learn these new skills:

	Add route to Linux Host routing table

	Add route to vpp routing table

And revisit the old ones:

	Examine vpp routing table

	Enable trace on vpp1 and vpp2

	ping from host to vpp

	Examine and clear trace on vpp1 and vpp2

	ping from vpp to host

	Examine and clear trace on vpp1 and vpp2

vpp command learned in this exercise

	ip route
add [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_ip.html#clicmd_ip_route]

Topology

[image: Connect two vpp topology]
Connect two vpp topology

Initial State

The initial state here is presumed to be the final state from the
exercise Connecting two vpp
instances

Action: Setup host route

sudo ip route add 10.10.2.0/24 via 10.10.1.2
ip route

default via 10.0.2.2 dev enp0s3
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15
10.10.1.0/24 dev vpp1host proto kernel scope link src 10.10.1.1
10.10.2.0/24 via 10.10.1.2 dev vpp1host

Setup return route on vpp2

sudo vppctl -s /run/vpp/cli-vpp2.sock ip route add 10.10.1.0/24 via 10.10.2.1

Ping from host through vpp1 to vpp2

	Setup a trace on vpp1 and vpp2

	Ping 10.10.2.2 from the host

	Examine the trace on vpp1 and vpp2

	Clear the trace on vpp1 and vpp2

Exercise: Switching

Skills to be Learned

	Associate an interface with a bridge domain

	Create a loopback interaface

	Create a BVI (Bridge Virtual Interface) for a bridge domain

	Examine a bridge domain

vpp command learned in this exercise

	show
bridge [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_bridge-domain]

	show bridge
detail [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_bridge-domain]

	set int l2
bridge [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_set_interface_l2_bridge]

	show l2fib
verbose [https://docs.fd.io/vpp/17.04/clicmd_src_vnet_l2.html#clicmd_show_l2fib]

Topology

[image: Switching Topology]
Switching Topology

Initial state

Unlike previous exercises, for this one you want to start tabula rasa.

Note: You will lose all your existing config in your vpp instances!

To clear existing config from previous exercises run:

ps -ef | grep vpp | awk '{print $2}'| xargs sudo kill
sudo ip link del dev vpp1host
sudo ip link del dev vpp1vpp2

Action: Run vpp instances

	Run a vpp instance named vpp1

	Run a vpp instance named vpp2

Action: Connect vpp1 to host

	Create a veth with one end named vpp1host and the other named
vpp1out.

	Connect vpp1out to vpp1

	Add ip address 10.10.1.1/24 on vpp1host

Action: Connect vpp1 to vpp2

	Create a veth with one end named vpp1vpp2 and the other named
vpp2vpp1.

	Connect vpp1vpp2 to vpp1.

	Connect vpp2vpp1 to vpp2.

Action: Configure Bridge Domain on vpp1

Check to see what bridge domains already exist, and select the first
bridge domain number not in use:

sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain

ID Index Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
0 0 off off off off off local0

In the example above, there is bridge domain ID ‘0’ already. Even though
sometimes we might get feedback as below:

no bridge-domains in use

the bridge domain ID ‘0’ still exists, where no operations are
supported. For instance, if we try to add host-vpp1out and host-vpp1vpp2
to bridge domain ID 0, we will get nothing setup.

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1out 0
sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1vpp2 0
sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain 0 detail

show bridge-domain: No operations on the default bridge domain are supported

So we will create bridge domain 1 instead of playing with the default
bridge domain ID 0.

Add host-vpp1out to bridge domain ID 1

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1out 1

Add host-vpp1vpp2 to bridge domain ID1

sudo vppctl -s /run/vpp/cli-vpp1.sock set int l2 bridge host-vpp1vpp2 1

Examine bridge domain 1:

sudo vppctl -s /run/vpp/cli-vpp1.sock show bridge-domain 1 detail

BD-ID Index BSN Age(min) Learning U-Forwrd UU-Flood Flooding ARP-Term BVI-Intf
 1 1 0 off on on on on off N/A

 Interface If-idx ISN SHG BVI TxFlood VLAN-Tag-Rewrite
 host-vpp1out 1 1 0 - * none
 host-vpp1vpp2 2 1 0 - * none

Action: Configure loopback interface on vpp2

sudo vppctl -s /run/vpp/cli-vpp2.sock create loopback interface

loop0

Add the ip address 10.10.1.2/24 to vpp2 interface loop0. Set the state
of interface loop0 on vpp2 to ‘up’

Action: Configure bridge domain on vpp2

Check to see the first available bridge domain ID (it will be 1 in this
case)

Add interface loop0 as a bridge virtual interface (bvi) to bridge domain
1

sudo vppctl -s /run/vpp/cli-vpp2.sock set int l2 bridge loop0 1 bvi

Add interface vpp2vpp1 to bridge domain 1

sudo vppctl -s /run/vpp/cli-vpp2.sock set int l2 bridge host-vpp2vpp1 1

Examine the bridge domain and interfaces.

Action: Ping from host to vpp and vpp to host

	Add trace on vpp1 and vpp2

	ping from host to 10.10.1.2

	Examine and clear trace on vpp1 and vpp2

	ping from vpp2 to 10.10.1.1

	Examine and clear trace on vpp1 and vpp2

Action: Examine l2 fib

sudo vppctl -s /run/vpp/cli-vpp1.sock show l2fib verbose

 Mac Address BD Idx Interface Index static filter bvi Mac Age (min)
 de:ad:00:00:00:00 1 host-vpp1vpp2 2 0 0 0 disabled
 c2:f6:88:31:7b:8e 1 host-vpp1out 1 0 0 0 disabled
2 l2fib entries

sudo vppctl -s /run/vpp/cli-vpp2.sock show l2fib verbose

 Mac Address BD Idx Interface Index static filter bvi Mac Age (min)
 de:ad:00:00:00:00 1 loop0 2 1 0 1 disabled
 c2:f6:88:31:7b:8e 1 host-vpp2vpp1 1 0 0 0 disabled
2 l2fib entries

Source NAT

Skills to be Learned

	Abusing networks namespaces for fun and profit

	Configuring snat address

	Configuring snat inside and outside interfaces

vpp command learned in this exercise

	snat add interface
address [https://docs.fd.io/vpp/17.04/clicmd_src_plugins_snat.html#clicmd_snat_add_interface_address]

	set interface
snat [https://docs.fd.io/vpp/17.04/clicmd_src_plugins_snat.html#clicmd_set_interface_snat]

Topology

[image: SNAT Topology]
SNAT Topology

Initial state

Unlike previous exercises, for this one you want to start tabula rasa.

Note: You will lose all your existing config in your vpp instances!

To clear existing config from previous exercises run:

ps -ef | grep vpp | awk '{print $2}'| xargs sudo kill
sudo ip link del dev vpp1host
sudo ip link del dev vpp1vpp2

Action: Install vpp-plugins

Snat is supported by a plugin, so vpp-plugins need to be installed

sudo apt-get install vpp-plugins

Action: Create vpp instance

Create one vpp instance named vpp1.

Confirm snat plugin is present:

sudo vppctl -s /run/vpp/cli-vpp1.sock show plugins

Plugin path is: /usr/lib/vpp_plugins
Plugins loaded:
 1.ioam_plugin.so
 2.ila_plugin.so
 3.acl_plugin.so
 4.flowperpkt_plugin.so
 5.snat_plugin.so
 6.libsixrd_plugin.so
 7.lb_plugin.so

Action: Create veth interfaces

	Create a veth interface with one end named vpp1outside and the other
named vpp1outsidehost

	Assign IP address 10.10.1.1/24 to vpp1outsidehost

	Create a veth interface with one end named vpp1inside and the other
named vpp1insidehost

	Assign IP address 10.10.2.1/24 to vpp1outsidehost

Because we’d like to be able to route *via* our vpp instance to an
interface on the same host, we are going to put vpp1insidehost into a
network namespace

Create a new network namespace ‘inside’

sudo ip netns add inside

Move interface vpp1inside into the ‘inside’ namespace:

sudo ip link set dev vpp1insidehost up netns inside

Assign an ip address to vpp1insidehost

sudo ip netns exec inside ip addr add 10.10.2.1/24 dev vpp1insidehost

Create a route inside the netns:

sudo ip netns exec inside ip route add 10.10.1.0/24 via 10.10.2.2

Action: Configure vpp outside interface

	Create a vpp host interface connected to vpp1outside

	Assign ip address 10.10.1.2/24

	Create a vpp host interface connected to vpp1inside

	Assign ip address 10.10.2.2/24

Action: Configure snat

Configure snat to use the address of host-vpp1outside

sudo vppctl -s /run/vpp/cli-vpp1.sock snat add interface address host-vpp1outside

Configure snat inside and outside interfaces

sudo vppctl -s /run/vpp/cli-vpp1.sock set interface snat in host-vpp1inside out host-vpp1outside

Action: Prepare to Observe Snat

Observing snat in this configuration is interesting. To do so, vagrant
ssh a second time into your VM and run:

sudo tcpdump -s 0 -i vpp1outsidehost

Also enable tracing on vpp1

Action: Ping via snat

sudo ip netns exec inside ping -c 1 10.10.1.1

Action: Confirm snat

Examine the tcpdump output and vpp1 trace to confirm snat occurred.

 API User Guides

API User Guides

This chapter describes how to use the C, Python and java APIs.

Downloading the jvpp jar

The following are instructions on how to download the jvpp jar

	Getting jvpp jar

	Getting jvpp via maven

 Getting jvpp jar

Getting jvpp jar

VPP provides java bindings which can be downloaded at:

	https://nexus.fd.io/content/repositories/fd.io.release/io/fd/vpp/jvpp-core/18.01/jvpp-core-18.01.jar

Getting jvpp via maven

1. Add the following to the repositories section in your ~/.m2/settings.xml to pick up the fd.io maven repo:

 <repository>
 <id>fd.io-release</id>
 <name>fd.io-release</name>
 <url>https://nexus.fd.io/content/repositories/fd.io.release/</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
</repository>

For more information on setting up maven repositories in settings.xml, please look at:

	https://maven.apache.org/guides/mini/guide-multiple-repositories.html

2. Then you can get jvpp by putting in the dependencies section of your pom.xml file:

<dependency>
 <groupId>io.fd.vpp</groupId>
 <artifactId>jvpp-core</artifactId>
 <version>17.10</version>
</dependency>

For more information on maven dependency managment, please look at:

	https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

 Reference

Reference

	Command Line Reference
	Interface Commands
	Show Hardware-Interfaces
	Summary/Usage

	Examples

	Clear Hardware-Interfaces
	Summary/Usage

	Examples

	Interface Commands

	Show Interface
	Summary/Usage

	Examples

	Clear Interfaces
	Summary/Usage

	Example

	Set Interface Mac Address
	Summary/Usage

	Examples

	Set Interface Mtu
	Summary/Usage

	Set Interface Promiscuous
	Summary/Usage

	Set Interface State
	Summary/Usage

	Examples

	Create Sub-Interfaces
	Summary/Usage

	Examples

	Vhost User Commands
	Create Vhost-User
	Summary/Usage

	Examples

	Show Vhost-User
	Summary/Usage

	Examples

	Debug Vhost-User
	Summary/Usage

	Delete Vhost-User
	Summary/Usage

	Examples

	VPP with Containers
	Overview
	Prerequisites

	Installing VirtualBox

	Installing Vagrant

	Vagrantfiles

	Creating your VM

	Accessing your VM

	Creating Containers

	Container prerequisites

	Routing two Containers

 Command Line Reference

Command Line Reference

This is a reference guide for the vpp debug commands that are referenced in the within these documents. This is NOT a complete list. For a complete list refer to the Debug CLI section of the
Source Code Documents [https://docs.fd.io/vpp/18.07/clicmd.html].

The debug CLI can be executed from a su shell using the vppctl command.

sudo bash
vppctl show interface
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213
 rx bytes 9928352943
 tx packets 50384
 tx bytes 3329279
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384
 rx bytes 3329279
 tx packets 6569213
 tx bytes 9928352943
 drops 1498
local0 0 down

Commands can also be executed from the vppct shell.

vppctl
 _______ _ _ _____ ___
 __/ __/ _ \ (_)__ | | / / _ \/ _ \
 _/ _// // / / / _ \ | |/ / ___/ ___/
 /_/ /____(_)_/___/ |___/_/ /_/

vpp# show interface
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213
 rx bytes 9928352943
 tx packets 50384
 tx bytes 3329279
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384
 rx bytes 3329279
 tx packets 6569213
 tx bytes 9928352943
 drops 1498
local0 0 down

	Interface Commands
	Show Hardware-Interfaces
	Summary/Usage

	Examples

	Clear Hardware-Interfaces
	Summary/Usage

	Examples

	Interface Commands

	Show Interface
	Summary/Usage

	Examples

	Clear Interfaces
	Summary/Usage

	Example

	Set Interface Mac Address
	Summary/Usage

	Examples

	Set Interface Mtu
	Summary/Usage

	Set Interface Promiscuous
	Summary/Usage

	Set Interface State
	Summary/Usage

	Examples

	Create Sub-Interfaces
	Summary/Usage

	Examples

	Vhost User Commands
	Create Vhost-User
	Summary/Usage

	Examples

	Show Vhost-User
	Summary/Usage

	Examples

	Debug Vhost-User
	Summary/Usage

	Delete Vhost-User
	Summary/Usage

	Examples

 Interface Commands

Interface Commands

	Show Hardware-Interfaces
	Summary/Usage

	Examples

	Clear Hardware-Interfaces
	Summary/Usage

	Examples

	Interface Commands

	Show Interface
	Summary/Usage

	Examples

	Clear Interfaces
	Summary/Usage

	Example

	Set Interface Mac Address
	Summary/Usage

	Examples

	Set Interface Mtu
	Summary/Usage

	Set Interface Promiscuous
	Summary/Usage

	Set Interface State
	Summary/Usage

	Examples

	Create Sub-Interfaces
	Summary/Usage

	Examples

 Show Hardware-Interfaces

Show Hardware-Interfaces

Display more detailed information about all or a list of given
interfaces. The verboseness of the output can be controlled by the
following optional parameters:

	brief: Only show name, index and state (default for bonded
interfaces).

	verbose: Also display additional attributes (default for all other
interfaces).

	detail: Also display all remaining attributes and extended
statistics.

To limit the output of the command to bonded interfaces and their
slave interfaces, use the ‘*bond*’ optional parameter.

Summary/Usage

show hardware-interfaces [brief|verbose|detail] [bond] [<interface> [<interface> [..]]] [<sw_idx> [<sw_idx> [..]]].

Examples

Example of how to display default data for all interfaces:

vpp# show hardware-interfaces
 Name Idx Link Hardware
GigabitEthernet7/0/0 1 up GigabitEthernet7/0/0
 Ethernet address ec:f4:bb:c0:bc:fc
 Intel e1000
 carrier up full duplex speed 1000 mtu 9216
 rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
 cpu socket 0
GigabitEthernet7/0/1 2 up GigabitEthernet7/0/1
 Ethernet address ec:f4:bb:c0:bc:fd
 Intel e1000
 carrier up full duplex speed 1000 mtu 9216
 rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
 cpu socket 0
VirtualEthernet0/0/0 3 up VirtualEthernet0/0/0
 Ethernet address 02:fe:a5:a9:8b:8e
VirtualEthernet0/0/1 4 up VirtualEthernet0/0/1
 Ethernet address 02:fe:c0:4e:3b:b0
VirtualEthernet0/0/2 5 up VirtualEthernet0/0/2
 Ethernet address 02:fe:1f:73:92:81
VirtualEthernet0/0/3 6 up VirtualEthernet0/0/3
 Ethernet address 02:fe:f2:25:c4:68
local0 0 down local0
 local

Example of how to display ‘verbose’ data for an interface by name and software index (where 2 is the software index):

vpp# show hardware-interfaces GigabitEthernet7/0/0 2 verbose
 Name Idx Link Hardware
GigabitEthernet7/0/0 1 up GigabitEthernet7/0/0
 Ethernet address ec:f4:bb:c0:bc:fc
 Intel e1000
 carrier up full duplex speed 1000 mtu 9216
 rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
 cpu socket 0
GigabitEthernet7/0/1 2 down GigabitEthernet7/0/1
 Ethernet address ec:f4:bb:c0:bc:fd
 Intel e1000
 carrier up full duplex speed 1000 mtu 9216
 rx queues 1, rx desc 1024, tx queues 3, tx desc 1024
 cpu socket 0

Clear Hardware-Interfaces

Clear the extended statistics for all or a list of given interfaces
(statistics associated with the ‘show hardware-interfaces’ command).

Summary/Usage

clear hardware-interfaces [<interface> [<interface> [..]]] [<sw_idx> [<sw_idx> [..]]].

Examples

Example of how to clear the extended statistics for all interfaces:

vpp# clear hardware-interfaces

Example of how to clear the extended statistics for an interface by name and software index (where 2 is the software index):

vpp# clear hardware-interfaces GigabitEthernet7/0/0 2

 Interface Commands

Interface Commands

Show Interface

Shows software interface information including counters and features

Summary/Usage

show interface [address|addr|features|feat] [<interface> [<interface> [..]]]

Examples

Example of how to show the interface counters:

vpp# show int
 Name Idx State Counter Count
TenGigabitEthernet86/0/0 1 up rx packets 6569213
 rx bytes 9928352943
 tx packets 50384
 tx bytes 3329279
TenGigabitEthernet86/0/1 2 down
VirtualEthernet0/0/0 3 up rx packets 50384
 rx bytes 3329279
 tx packets 6569213
 tx bytes 9928352943
 drops 1498
local0 0 down

Example of how to display the interface placement:

vpp# show interface rx-placement
Thread 1 (vpp_wk_0):
 node dpdk-input:
 GigabitEthernet7/0/0 queue 0 (polling)
 node vhost-user-input:
 VirtualEthernet0/0/12 queue 0 (polling)
 VirtualEthernet0/0/12 queue 2 (polling)
 VirtualEthernet0/0/13 queue 0 (polling)
 VirtualEthernet0/0/13 queue 2 (polling)
Thread 2 (vpp_wk_1):
 node dpdk-input:
 GigabitEthernet7/0/1 queue 0 (polling)
 node vhost-user-input:
 VirtualEthernet0/0/12 queue 1 (polling)
 VirtualEthernet0/0/12 queue 3 (polling)
 VirtualEthernet0/0/13 queue 1 (polling)
 VirtualEthernet0/0/13 queue 3 (polling)

Clear Interfaces

Clear the statistics for all interfaces (statistics associated with the
‘show interface’ command).

Summary/Usage

clear interfaces

Example

Example of how to clear the statistics for all interfaces:

vpp# clear interfaces

Set Interface Mac Address

The ‘set interface mac address ‘ command allows to set MAC address of
given interface. In case of NIC interfaces the one has to support MAC
address change. A side effect of MAC address change are changes of MAC
addresses in FIB tables (ipv4 and ipv6).

Summary/Usage

set interface mac address <interface> <mac-address>.

Examples

Examples of how to change MAC Address of interface:

vpp# set interface mac address GigabitEthernet0/8/0 aa:bb:cc:dd:ee:01
vpp# set interface mac address host-vpp0 aa:bb:cc:dd:ee:02
vpp# set interface mac address tap-0 aa:bb:cc:dd:ee:03
vpp# set interface mac address pg0 aa:bb:cc:dd:ee:04

Set Interface Mtu

Summary/Usage

set interface mtu [packet|ip4|ip6|mpls] <value> <interface>.

Set Interface Promiscuous

Summary/Usage

set interface promiscuous [on|off] <interface>.

Set Interface State

This command is used to change the admin state (up/down) of an
interface.

If an interface is down, the optional ‘punt’ flag can also be set. The
‘punt’ flag implies the interface is disabled for forwarding but punt
all traffic to slow-path. Use the ‘enable’ flag to clear ‘punt’ flag
(interface is still down).

Summary/Usage

set interface state <interface> [up|down|punt|enable].

Examples

Example of how to configure the admin state of an interface to up:

vpp# set interface state GigabitEthernet2/0/0 up

Example of how to configure the admin state of an interface to down:

vpp# set interface state GigabitEthernet2/0/0 down

 Create Sub-Interfaces

Create Sub-Interfaces

This command is used to add VLAN IDs to interfaces, also known as
subinterfaces. The primary input to this command is the ‘interface’
and ‘subId’ (subinterface Id) parameters. If no additional VLAN ID is
provide, the VLAN ID is assumed to be the ‘subId’. The VLAN ID and
‘subId’ can be different, but this is not recommended.

This command has several variations:

	create sub-interfaces <interface> <subId> - Create a subinterface
to process packets with a given 802.1q VLAN ID (same value as the
‘subId’).

	create sub-interfaces <interface> <subId> default - Adding the
‘default’ parameter indicates that packets with VLAN IDs that do
not match any other subinterfaces should be sent to this
subinterface.

	create sub-interfaces <interface> <subId> untagged - Adding the
‘untagged’ parameter indicates that packets no VLAN IDs should be
sent to this subinterface.

	create sub-interfaces <interface> <subId>-<subId> - Create a
range of subinterfaces to handle a range of VLAN IDs.

	create sub-interfaces <interface> <subId> dot1q|dot1ad <vlanId>|any
[exact-match] - Use this command to specify the outer VLAN ID, to
either be explicited or to make the VLAN ID different from the
‘subId’.

	create sub-interfaces <interface> <subId> dot1q|dot1ad <vlanId>|any
inner-dot1q <vlanId>|any [exact-match] - Use this command to
specify the outer VLAN ID and the innner VLAN ID.

When ‘dot1q’ or ‘dot1ad’ is explictly entered, subinterfaces can be
configured as either exact-match or non-exact match. Non-exact match is
the CLI default. If ‘exact-match’ is specified, packets must have the
same number of VLAN tags as the configuration. For non-exact-match,
packets must at least that number of tags. L3 (routed) interfaces must
be configured as exact-match. L2 interfaces are typically configured as
non-exact-match. If ‘dot1q’ or ‘dot1ad’ is NOT entered, then the
default behavior is exact-match.

Use the ‘show interface’ command to display all subinterfaces.

Summary/Usage

create sub-interfaces <interface> {<subId> [default|untagged]} | {<subId>-<subId>} | {<subId> dot1q|dot1ad <vlanId>|any [inner-dot1q <vlanId>|any] [exact-match]}.

Examples

Example of how to create a VLAN subinterface 11 to process packets on 802.1q VLAN ID 11:

vpp# create sub-interfaces GigabitEthernet2/0/0 11

The previous example is shorthand and is equivalent to:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1q 11 exact-match

Example of how to create a subinterface number that is different from the VLAN ID:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1q 100

Examples of how to create q-in-q and q-in-any subinterfaces:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1q 100 inner-dot1q 200
vpp# create sub-interfaces GigabitEthernet2/0/0 12 dot1q 100 inner-dot1q any

Examples of how to create dot1ad interfaces:

vpp# create sub-interfaces GigabitEthernet2/0/0 11 dot1ad 11
vpp# create sub-interfaces GigabitEthernet2/0/0 12 dot1ad 100 inner-dot1q 200

Examples of ‘exact-match’ versus non-exact match. A packet with outer VLAN 100 and inner VLAN 200 would match this interface, because the default is non-exact match:

vpp# create sub-interfaces GigabitEthernet2/0/0 5 dot1q 100

However, the same packet would NOT match this interface because ‘exact-match’ is specified and only one VLAN is configured, but packet contains two VLANs:

vpp# create sub-interfaces GigabitEthernet2/0/0 5 dot1q 100 exact-match

Example of how to created a subinterface to process untagged packets:

vpp# create sub-interfaces GigabitEthernet2/0/0 5 untagged

Example of how to created a subinterface to process any packet with a VLAN ID that does not match any other subinterface:

vpp# create sub-interfaces GigabitEthernet2/0/0 7 default

When subinterfaces are created, they are in the down state. Example of how to enable a newly created subinterface:

vpp# set interface GigabitEthernet2/0/0.7 up

 Vhost User Commands

Vhost User Commands

	Create Vhost-User
	Summary/Usage

	Examples

	Show Vhost-User
	Summary/Usage

	Examples

	Debug Vhost-User
	Summary/Usage

	Delete Vhost-User
	Summary/Usage

	Examples

 Create Vhost-User

Create Vhost-User

Create a vHost User interface. Once created, a new virtual interface
will exist with the name ‘VirtualEthernet0/0/x’, where ‘x’ is the
next free index.

There are several parameters associated with a vHost interface:

	socket <socket-filename> - Name of the linux socket used by
hypervisor and VPP to manage the vHost interface. If in ‘server’
mode, VPP will create the socket if it does not already exist. If in
‘client’ mode, hypervisor will create the socket if it does not
already exist. The VPP code is indifferent to the file location.
However, if SELinux is enabled, then the socket needs to be created
in ‘/var/run/vpp/’.

	server - Optional flag to indicate that VPP should be the server
for the linux socket. If not provided, VPP will be the client. In
‘server’ mode, the VM can be reset without tearing down the vHost
Interface. In ‘client’ mode, VPP can be reset without bringing down
the VM and tearing down the vHost Interface.

	feature-mask <hex> - Optional virtio/vhost feature set negotiated
at startup. This is intended for degugging only. It is
recommended that this parameter not be used except by experienced
users. By default, all supported features will be advertised.
Otherwise, provide the set of features desired.

	0x000008000 (15) - VIRTIO_NET_F_MRG_RXBUF

	0x000020000 (17) - VIRTIO_NET_F_CTRL_VQ

	0x000200000 (21) - VIRTIO_NET_F_GUEST_ANNOUNCE

	0x000400000 (22) - VIRTIO_NET_F_MQ

	0x004000000 (26) - VHOST_F_LOG_ALL

	0x008000000 (27) - VIRTIO_F_ANY_LAYOUT

	0x010000000 (28) - VIRTIO_F_INDIRECT_DESC

	0x040000000 (30) - VHOST_USER_F_PROTOCOL_FEATURES

	0x100000000 (32) - VIRTIO_F_VERSION_1

	hwaddr <mac-addr> - Optional ethernet address, can be in either
X:X:X:X:X:X unix or X.X.X cisco format.

	renumber <dev_instance> - Optional parameter which allows the
instance in the name to be specified. If instance already exists,
name will be used anyway and multiple instances will have the same
name. Use with caution.

Summary/Usage

create vhost-user socket <socket-filename> [server] [feature-mask <hex>] [hwaddr <mac-addr>] [renumber <dev_instance>]

Examples

Example of how to create a vhost interface with VPP as the client
and all features enabled:

vpp# create vhost-user socket /var/run/vpp/vhost1.sock
VirtualEthernet0/0/0

Example of how to create a vhost interface with VPP as the server
and with just multiple queues enabled:

vpp# create vhost-user socket /var/run/vpp/vhost2.sock server feature-mask 0x40400000
VirtualEthernet0/0/1

Once the vHost interface is created, enable the interface using:

vpp# set interface state VirtualEthernet0/0/0 up

Show Vhost-User

Display the attributes of a single vHost User interface (provide
interface name), multiple vHost User interfaces (provide a list of
interface names seperated by spaces) or all Vhost User interfaces (omit
an interface name to display all vHost interfaces).

Summary/Usage

show vhost-user [<interface> [<interface> [..]]] [descriptors].

Examples

Example of how to display a vhost interface:

vpp# show vhost-user VirtualEthernet0/0/0
Virtio vhost-user interfaces
Global:
 coalesce frames 32 time 1e-3
Interface: VirtualEthernet0/0/0 (ifindex 1)
virtio_net_hdr_sz 12
 features mask (0xffffffffffffffff):
 features (0x50408000):
 VIRTIO_NET_F_MRG_RXBUF (15)
 VIRTIO_NET_F_MQ (22)
 VIRTIO_F_INDIRECT_DESC (28)
 VHOST_USER_F_PROTOCOL_FEATURES (30)
 protocol features (0x3)
 VHOST_USER_PROTOCOL_F_MQ (0)
 VHOST_USER_PROTOCOL_F_LOG_SHMFD (1)

 socket filename /var/run/vpp/vhost1.sock type client errno "Success"

rx placement:
 thread 1 on vring 1
 thread 1 on vring 5
 thread 2 on vring 3
 thread 2 on vring 7
 tx placement: spin-lock
 thread 0 on vring 0
 thread 1 on vring 2
 thread 2 on vring 0

Memory regions (total 2)
region fd guest_phys_addr memory_size userspace_addr mmap_offset mmap_addr
====== ===== ================== ================== ================== ================== ==================
 0 60 0x0000000000000000 0x00000000000a0000 0x00002aaaaac00000 0x0000000000000000 0x00002aab2b400000
 1 61 0x00000000000c0000 0x000000003ff40000 0x00002aaaaacc0000 0x00000000000c0000 0x00002aababcc0000

 Virtqueue 0 (TX)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 128 used.flags 1 used.idx 0
 kickfd 62 callfd 64 errfd -1

 Virtqueue 1 (RX)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
 kickfd 65 callfd 66 errfd -1

 Virtqueue 2 (TX)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 128 used.flags 1 used.idx 0
 kickfd 63 callfd 70 errfd -1

 Virtqueue 3 (RX)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
 kickfd 72 callfd 74 errfd -1

 Virtqueue 4 (TX disabled)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
 kickfd 76 callfd 78 errfd -1

 Virtqueue 5 (RX disabled)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
 kickfd 80 callfd 82 errfd -1

 Virtqueue 6 (TX disabled)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
 kickfd 84 callfd 86 errfd -1

 Virtqueue 7 (RX disabled)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 0 used.flags 1 used.idx 0
 kickfd 88 callfd 90 errfd -1

The optional ‘descriptors’ parameter will display the same output as the
previous example but will include the descriptor table for each queue. The output is truncated below:

vpp# show vhost-user VirtualEthernet0/0/0 descriptors

Virtio vhost-user interfaces
Global:
 coalesce frames 32 time 1e-3
Interface: VirtualEthernet0/0/0 (ifindex 1)
virtio_net_hdr_sz 12
 features mask (0xffffffffffffffff):
 features (0x50408000):
 VIRTIO_NET_F_MRG_RXBUF (15)
 VIRTIO_NET_F_MQ (22)
:
 Virtqueue 0 (TX)
 qsz 256 last_avail_idx 0 last_used_idx 0
 avail.flags 1 avail.idx 128 used.flags 1 used.idx 0
 kickfd 62 callfd 64 errfd -1

 descriptor table:
 id addr len flags next user_addr
 ===== ================== ===== ====== ===== ==================
 0 0x0000000010b6e974 2060 0x0002 1 0x00002aabbc76e974
 1 0x0000000010b6e034 2060 0x0002 2 0x00002aabbc76e034
 2 0x0000000010b6d6f4 2060 0x0002 3 0x00002aabbc76d6f4
 3 0x0000000010b6cdb4 2060 0x0002 4 0x00002aabbc76cdb4
 4 0x0000000010b6c474 2060 0x0002 5 0x00002aabbc76c474
 5 0x0000000010b6bb34 2060 0x0002 6 0x00002aabbc76bb34
 6 0x0000000010b6b1f4 2060 0x0002 7 0x00002aabbc76b1f4
 7 0x0000000010b6a8b4 2060 0x0002 8 0x00002aabbc76a8b4
 8 0x0000000010b69f74 2060 0x0002 9 0x00002aabbc769f74
 9 0x0000000010b69634 2060 0x0002 10 0x00002aabbc769634
 10 0x0000000010b68cf4 2060 0x0002 11 0x00002aabbc768cf4
:
 249 0x0000000000000000 0 0x0000 250 0x00002aab2b400000
 250 0x0000000000000000 0 0x0000 251 0x00002aab2b400000
 251 0x0000000000000000 0 0x0000 252 0x00002aab2b400000
 252 0x0000000000000000 0 0x0000 253 0x00002aab2b400000
 253 0x0000000000000000 0 0x0000 254 0x00002aab2b400000
 254 0x0000000000000000 0 0x0000 255 0x00002aab2b400000
 255 0x0000000000000000 0 0x0000 32768 0x00002aab2b400000

 Virtqueue 1 (RX)
 qsz 256 last_avail_idx 0 last_used_idx 0

Debug Vhost-User

Turn on/off debug for vhost

Summary/Usage

debug vhost-user <on | off>.

Delete Vhost-User

Delete a vHost User interface using the interface name or the software
interface index. Use the ‘show interface’ command to determine the
software interface index. On deletion, the linux socket will not be
deleted.

Summary/Usage

delete vhost-user {<interface> | sw_if_index <sw_idx>}.

Examples

Example of how to delete a vhost interface by name:

vpp# delete vhost-user VirtualEthernet0/0/1

Example of how to delete a vhost interface by software interface index:

vpp# delete vhost-user sw_if_index 1

 VPP with Containers

VPP with Containers

This is the guide to using VPP with Vagrant (in a VM with two containers).

	Overview
	Prerequisites

	Installing VirtualBox

	Installing Vagrant

	Vagrantfiles

	Creating your VM

	Accessing your VM

	Creating Containers

	Container prerequisites

	Routing two Containers

 Overview

Overview

This section will describe how to install a Virtual Machine (VM) for Vagrant, and install containers inside that VM.

Containers are environments similar to VM’s, but are known to be faster since they do not simulate seperate kernels and hardware, as VM’s do. You can read more about Linux containers here [https://linuxcontainers.org/].

In this section, we’ll use Vagrant to run our VirtualBox VM. Vagrant automates the configuration of virtual environments by giving you the ability to create and destroy VM’s quick and seemlessly.
You have the git cloned repo of VPP locally on your machine.

Prerequisites

You have the git cloned repo of VPP locally on your machine.

Installing VirtualBox

First, download VirtualBox, which is virtualization software for creating VM’s.

If you’re on CentOS, follow the steps here [https://wiki.centos.org/HowTos/Virtualization/VirtualBox].

If you’re on Ubuntu, perform:

$ sudo apt-get install virtualbox

Installing Vagrant

Now its time to install Vagrant.

Here we are on a 64-bit version of CentOS, downloading and installing Vagrant 2.1.1:

$ yum -y install https://releases.hashicorp.com/vagrant/2.1.1/vagrant_2.1.1_x86_64.rpm

Note

This is an installation of Vagrant 2.1.1 on a 64-bit CentOS machine.

If you don’t have 64-bit CentOS or want to download a newer version of Vagrant, go to the Vagrant download page [https://www.vagrantup.com/downloads.html], copy the download link for your specified version, and replace the https:// link above and use the install command for the OS of your current system (yum install for CentOS or apt-get install for Ubuntu).

Vagrantfiles

The Vagrantfile contains the configuration settings for the machine and software requirements of your VM. Thus, any user with your Vagrantfile can instantiate a VM with those exact settings.

The syntax of Vagrantfiles is the programming language Ruby, but experience with Ruby is not completely necessary as most modifications to your Vagrantfile is changing variable values.

The Vagrantfile creates a Vagrant Box, which is a “development-ready box” that can be copied to other machines to recreate the same environment. The Vagrant website for boxes [https://app.vagrantup.com/boxes/search] shows you all the available Vagrant Boxes containing different operating systems.

Creating your VM

As a prerequiste, you should already have the Git VPP directory on your machine.

Change directories to your vpp/extras/vagrant directory.

Looking at the Vagrantfile, we can see that the default OS is Ubuntu 16.04:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

 # Pick the right distro and bootstrap, default is ubuntu1604
 distro = (ENV['VPP_VAGRANT_DISTRO'] || "ubuntu1604")
 if distro == 'centos7'
 config.vm.box = "centos/7"
 config.vm.box_version = "1708.01"
 config.ssh.insert_key = false
 elsif distro == 'opensuse'
 config.vm.box = "opensuse/openSUSE-42.3-x86_64"
 config.vm.box_version = "1.0.4.20170726"
 else
 config.vm.box = "puppetlabs/ubuntu-16.04-64-nocm"

As mentioned in the preface above, if you want a box configured to a different OS, you can specify which OS box you want on the Vagrant boxes page [https://app.vagrantup.com/boxes/search].

Since there already exists a Vagrantfile from our repo, all you need to do is:

$ vagrant up

Note that doing this above command may take quite some time, since you are installing a VM. Take a break and get some scooby snacks.

To confirm it is up, we can do:

$ vagrant global-status

You will have only one machine running, but I have multiple as shown below:

[centos@dskl09 vpp-userdemo]$ vagrant global-status
id name provider state directory

d90a17b default virtualbox poweroff /home/centos/andrew-vpp/vppsb/vpp-userdemo
77b085e default virtualbox poweroff /home/centos/andrew-vpp/vppsb2/vpp-userdemo
c1c8952 default virtualbox poweroff /home/centos/andrew-vpp/testingVPPSB/extras/vagrant
c199140 default virtualbox running /home/centos/andrew-vpp/vppsb3/vpp-userdemo

Note

To poweroff your VM, type vagrant halt <id>.
If you want to try other commands on your box, visit the Vagrant CLI Page [https://www.vagrantup.com/docs/cli/].

 Accessing your VM

Accessing your VM

Lets ssh into our newly created box:

$ vagrant ssh <id>

Now you’re in your VM.

[[centos@dskl09 vpp-userdemo]$ vagrant ssh c1c
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-21-generic x86_64)

 * Documentation: https://help.ubuntu.com/
Last login: Mon Jun 25 08:05:38 2018 from 10.0.2.2
vagrant@localhost:~$

Note

Type exit if you want to exit your VM, or container (which we’ll get to soon.)

Let’s set up the hugepages:

$ sysctl -w vm.nr_hugepages=1024

vagrant@localhost:~ sysctl: permission denied on key 'vm.nr_hugepages'

Oh no! What happened? We’re not root. Lets change to root.

$ sudo bash

Then we can perform the previous sysctl command with no issues.

To check if it was set correctly:

$ HUGEPAGES=`sysctl -n vm.nr_hugepages`
$ echo $HUGEPAGES

Which should output 1024.

Now we want to add the VPP repo as to our sources list in our VM. We append the FD.io binary repo to a file called 99fd.io.list, so apt-get update and install can use it:

ls /etc/apt # here is where you can see your sources.list.d directory after doing this command below

echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./" | sudo tee -a /etc/apt/sources.list.d/99fd.io.list

Do an apt-get to make sure the VM and its libraries are updated:

$ apt-get update

Now we want to install VPP and lxc (for our containers):

$ apt-get install vpp vpp-lib vpp-dpdk-dkms bridge-utils lxc

Now we can start running VPP on our host VM:

$ service vpp start

Check if we installed lxc:

$ lxc-checkconfig

 Creating Containers

Creating Containers

The system configuration is located at /etc/lxc/lxc.conf or ~/.config/lxc/lxc.conf for unprivileged containers.

This configuration file is used to set values such as default lookup paths and storage backend settings for LXC. It can be found in each container’s /sys/class/net directory.

The command below configures the LXC (Linux container) networks to create an interface for a Linux bridge and an unconsumed second interface to be used by each container.

For more information on linux containers with Ubuntu, visit the lxc server guide [https://help.ubuntu.com/lts/serverguide/lxc.html].

echo -e "lxc.network.name = veth0\nlxc.network.type = veth\nlxc.network.name = veth_link1" | sudo tee -a /etc/lxc/default.conf

This next command will create an Ubuntu Xenial container named “cone”.

$ sudo lxc-create -t download -n cone -- --dist ubuntu --release xenial --arch amd64 --keyserver hkp://p80.pool.sks-keyservers.net:80

If successful, you’ll get an output similar to this:

root@localhost:~# You just created an Ubuntu xenial amd64 (20180625_07:42) container.

To enable SSH, run: apt install openssh-server
No default root or user password are set by LXC.

You can make another container “ctwo”.

$ sudo lxc-create -t download -n ctwo -- --dist ubuntu --release xenial --arch amd64 --keyserver hkp://p80.pool.sks-keyservers.net:80

Afterwards, you can list your containers:

$ sudo lxc-ls

root@localhost:~# cone ctwo

Here are some lxc container commands [https://help.ubuntu.com/lts/serverguide/lxc.html.en-GB#lxc-basic-usage] you may find useful:

sudo lxc-ls --fancy
sudo lxc-start --name u1 --daemon
sudo lxc-info --name u1
sudo lxc-stop --name u1
sudo lxc-destroy --name u1

Lets start the first container:

$ sudo lxc-start --name cone

Verify its running:

$ sudo lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6
cone RUNNING 0 - - -
ctwo STOPPED 0 - - -

 Container prerequisites

Container prerequisites

Lets go into container cone and install prerequisites such as VPP, as well as some additional commands:

To enter our container via the shell, type:

$ sudo lxc-attach -n cone

Which should output:

root@cone:/#

Now run the linux DHCP setup and install VPP:

$ sudo bash
$ resolvconf -d eth0
$ dhclient
$ apt-get install -y wget
$ echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./" | sudo tee -a /etc/apt/sources.list.d/99fd.io.list
$ apt-get update
$ apt-get install -y --force-yes vpp
$ sh -c 'echo \"\\ndpdk {\\n no-pci\\n}\" >> /etc/vpp/startup.conf'

And lets start VPP in this container as well:

$ service vpp start

Now repeat this process for the second container, ctwo, and also don’t forget to “start” it with sudo lxc-start –name ctwo.

 Routing two Containers

Routing two Containers

Now lets go through the process of connecting these two linux containers to VPP and pinging between them.

In container cone, lets check our current network configuration:

$ ip -o a

We can see that we have three network interfaces, lo, veth0, and veth_link1.

root@cone:/# ip -o a
1: lo inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_lft forever
1: lo inet6 ::1/128 scope host \ valid_lft forever preferred_lft forever
30: veth0 inet 10.0.3.157/24 brd 10.0.3.255 scope global veth0\ valid_lft forever preferred_lft forever
30: veth0 inet6 fe80::216:3eff:fee2:d0ba/64 scope link \ valid_lft forever preferred_lft forever
32: veth_link1 inet6 fe80::2c9d:83ff:fe33:37e/64 scope link \ valid_lft forever preferred_lft forever

Notice that veth_link1 has no assigned IP.

We can also check if our interfaces are down or up:

$ ip link

root@cone:/# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
30: veth0@if31: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
 link/ether 00:16:3e:e2:d0:ba brd ff:ff:ff:ff:ff:ff link-netnsid 0
32: veth_link1@if33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
 link/ether 2e:9d:83:33:03:7e brd ff:ff:ff:ff:ff:ff link-netnsid 0

Note

Take note that our network index for veth_link1 is 32, and that its parent index is 33, shown by veth_link1@if33. Yours will probably be different, but take note of these index’s.

Lets make sure your loopback interface is up, and lets assign an IP and gateway to veth_link1.

$ ip link set dev lo up
$ ip addr add 172.16.1.2/24 dev veth_link1
$ ip link set dev veth_link1 up
$ ip route add default via 172.16.1.1 dev veth_link1

Here, the IP is 172.16.1.2/24 and the gateway is 172.16.1.1.

When I try to add the gateway, I get an error:

root@cone:/# ip route add default via 172.16.1.1 dev veth_link1
RTNETLINK answers: File exists

Fix this by renewing the DHCP leases, and then trying again:

root@cone:/# dhclient -r
Killed old client process
root@cone:/# ip route add default via 172.16.1.1 dev veth_link1
root@cone:/#

Now it works! :)

We can run some commands to verify our setup:

root@cone:/# ip -o a
1: lo inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_lft forever
1: lo inet6 ::1/128 scope host \ valid_lft forever preferred_lft forever
30: veth0 inet6 fe80::216:3eff:fee2:d0ba/64 scope link \ valid_lft forever preferred_lft forever
32: veth_link1 inet 172.16.1.2/24 scope global veth_link1\ valid_lft forever preferred_lft forever
32: veth_link1 inet6 fe80::2c9d:83ff:fe33:37e/64 scope link \ valid_lft forever preferred_lft forever
root@cone:/# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 172.16.1.1 0.0.0.0 UG 0 0 0 veth_link1
172.16.1.0 * 255.255.255.0 U 0 0 0 veth_link1

We see that the IP has been assigned, as well as our default gateway.

Now exit this container and repeat this setup with ctwo, except with IP 172.16.2.2/24 and gateway 172.16.2.1.

After thats done, if you’re still in a container, go back into your VM:

$ exit

Now, in the VM, if we run ip link we can see the host veth network interfaces, and their connection with the container veth’s.

vagrant@localhost:~$ ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noqueue state DOWN mode DEFAULT group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:33:82:8a brd ff:ff:ff:ff:ff:ff
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:d9:9f:ac brd ff:ff:ff:ff:ff:ff
4: enp0s9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:78:84:9d brd ff:ff:ff:ff:ff:ff
5: lxcbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
 link/ether 00:16:3e:00:00:00 brd ff:ff:ff:ff:ff:ff
19: veth0C2FL7@if18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master lxcbr0 state UP mode DEFAULT group default qlen 1000
 link/ether fe:0d:da:90:c1:65 brd ff:ff:ff:ff:ff:ff link-netnsid 1
21: veth8NA72P@if20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
 link/ether fe:1c:9e:01:9f:82 brd ff:ff:ff:ff:ff:ff link-netnsid 1
31: vethXQMY4C@if30: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master lxcbr0 state UP mode DEFAULT group default qlen 1000
 link/ether fe:9a:d9:29:40:bb brd ff:ff:ff:ff:ff:ff link-netnsid 0
33: vethQL7KOC@if32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
 link/ether fe:ed:89:54:47:a2 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Remember our network interface index 32 in cone? We can see at the bottom the name of the 33rd index vethQL7KOC@if32. Take note of this network interface name for the veth connected to cone, and the other network interface name for ctwo.

With VPP in our VM, we can show our current VPP interfaces:

$ sudo vppctl show inter

Which should only show local0.

Based on these names, which are specific to my systems, we can setup the VPP host-interfaces:

$ sudo vppctl create host-interface name vethQL7K0C
$ sudo vppctl create host-interface name veth8NA72P

Verify they have been setup:

$ sudo vppctl show inter

Which should output three interfaces, lo, and the other two network interfaces we just set up.

Change the links state to up:

$ sudo vppctl set interface state host-vethQL7K0C up
$ sudo vppctl set interface state host-veth8NA72P up

Add IP addresses for the other end of each veth link:

$ sudo vppctl set interface ip address host-vethQL7K0C 172.16.1.1/24
$ sudo vppctl set interface ip address host-veth8NA72P 172.16.2.1/24

Verify the interfaces are up with the previous show inter command, or you can also see the L3 table, or FIB by doing:

$ sudo vppctl show ip fib

At long last you probably want to see some pings:

$ sudo lxc-attach -n cone -- ping -c3 172.16.2.2
$ sudo lxc-attach -n ctwo -- ping -c3 172.16.1.2

Which should send/recieve three packets for each command.

 Index

Index

 Purpose of VPP Configuration Utility

Purpose of VPP Configuration Utility

Vpp-config utility allows the user to configure FD.io VPP in a simple and safe manner.
The utility takes input from the user and then modifies the key configuration files.
The user can then examine these files to be sure they are correct and then actually
apply the configuration. The utility also includes an installation utility and some basic tests.

Installing the vpp-config utility

The installation and executing of the VPP configuration utility is
simple. First install the python pip module [https://pip.pypa.io/en/stable/installing/]. Then using pip,

Run as Root

Run the terminal as root

$ sudo -H bash

Afterwards, install the vpp-config utility through the pip command.

pip install vpp-config

Using the vpp-config utility

Configuration Tool Main Menu

vpp-config utility provides the user with a menu that offers a variety of useful features used
to configure the devices which will be used by VPP, hugepages, and allowing VPP to be the only
process running on its specified CPU.

It is recommended that these menu options are executed in order.

	Show basic system information

	Dry Run

	Full Configuration

	List/Install/Uninstall VPP

	Execute some basic tests

Target Files

The following files will be modified by VPP config:

/etc/vpp/startup.conf
/etc/sysctl.d/80-vpp.conf
/etc/default/grub

Once vpp-config is installed simply type:

vpp-config

Welcome to the VPP system configuration utility

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command:
and answer the questions. If you are not sure what to answer choose the
default.

Configuring FD.io VPP with Default Values

If you do not choose to modify the default for any of the questions prompted by vpp-config,
you may press the ENTER key to select the default options:

	Questions that ask [Y/n], the capital letter Y is the default answer.

	Numbers have their default within brackets, such as in [1024], the 1024 is the default.

Command 1. Show System Information

Before Configuration

When the utility is first started we can show the basic system
information.

vpp-config

Welcome to the VPP system configuration utility

These are the files we will modify:
 /etc/vpp/startup.conf
 /etc/sysctl.d/80-vpp.conf
 /etc/default/grub

Before we change them, we'll create working copies in /usr/local/vpp/vpp-config/dryrun
Please inspect them carefully before applying the actual configuration (option 3)!

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1

==============================
NODE: DUT1

CPU:
 Model name: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
 CPU(s): 32
 Thread(s) per core: 2
 Core(s) per socket: 8
 Socket(s): 2
 NUMA node0 CPU(s): 0-7,16-23
 NUMA node1 CPU(s): 8-15,24-31
 CPU max MHz: 3600.0000
 CPU min MHz: 1200.0000
 SMT: Enabled

VPP Threads: (Name: Cpu Number)

Grub Command Line:
 Current: BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro
 Configured: GRUB_CMDLINE_LINUX_DEFAULT=""

Huge Pages:
 Total System Memory : 65863484 kB
 Total Free Memory : 56862700 kB
 Actual Huge Page Total : 1024
 Configured Huge Page Total : 1024
 Huge Pages Free : 1024
 Huge Page Size : 2048 kB

Devices:

Devices with link up (can not be used with VPP):
0000:08:00.0 enp8s0f0 I350 Gigabit Network Connection

Devices bound to kernel drivers:
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

No devices bound to DPDK drivers

VPP Service Status:
 Not Installed

==============================

After Configuration

When we show the system information after the system is configured
notice that the VPP workers and the VPP main core is on the correct Numa
Node. Notice also that VPP is running and the interfaces are shown.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 1
 ==============================
 NODE: DUT1

 CPU:
 Model name: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
 CPU(s): 72
 Thread(s) per core: 2
 Core(s) per socket: 18
 Socket(s): 2
 NUMA node0 CPU(s): 0-17,36-53
 NUMA node1 CPU(s): 18-35,54-71
 CPU max MHz: 3700.0000
 CPU min MHz: 1000.0000
 SMT: Enabled

 VPP Threads: (Name: Cpu Number)
 vpp_main : 0
 vpp_stats : 0

 Grub Command Line:
 Current: BOOT_IMAGE=/vmlinuz-3.10.0-693.21.1.el7.x86_64 root=UUID=cc995b4c-3c20-4ca5-ae26-d6ed364af63f ro crashkernel=auto biosdevname=0 net.ifnames=0 rhgb quiet intel_iommu=on
 Configured: GRUB_CMDLINE_LINUX="crashkernel=auto biosdevname=0 net.ifnames=0 rhgb quiet intel_iommu=on"

 Huge Pages:
 Total System Memory : 196583908 kB
 Total Free Memory : 113683588 kB
 Actual Huge Page Total : 4096
 Configured Huge Page Total : 8192
 Huge Pages Free : 3960
 Huge Page Size : 2048 kB

 Devices:

 Devices with link up (can not be used with VPP):
 0000:3d:00.0 eth2 Ethernet Connection X722 for 10GBASE-T

 Devices bound to kernel drivers:
 0000:3d:00.1 eth3 Ethernet Connection X722 for 10GBASE-T
 0000:18:02.1 eth7 Ethernet Virtual Function 700 Series
 0000:18:02.0 eth6 Ethernet Virtual Function 700 Series
 0000:18:02.3 eth9 Ethernet Virtual Function 700 Series
 0000:18:02.2 eth8 Ethernet Virtual Function 700 Series
 0000:18:00.0 eth0 Ethernet Controller XXV710 for 25GbE SFP28
 0000:86:00.0 eth4 Ethernet Controller XXV710 for 25GbE SFP28
 0000:86:00.1 eth5 Ethernet Controller XXV710 for 25GbE SFP28

 No devices bound to DPDK drivers

 VPP Service Status:
 activating (auto

 ==============================

Command 2. Dry Run

With VPP installed we can now execute a configuration dry run. This
option will create the configuration files and put them in a dryrun
directory. This directory is located for Ubuntu in
/usr/local/vpp/vpp-config/dryrun and for Centos in
/usr/vpp/vpp-config/dryrun. These files should be examined to be sure
that they are valid before actually applying the configuration with
option 3.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 2

These device(s) are currently NOT being used by VPP or the OS.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to give any of these devices back to the OS [Y/n]? y
Would you like to use device 0000:86:00.0 for the OS [y/N]? y
Would you like to use device 0000:86:00.1 for the OS [y/N]? y

These devices have kernel interfaces, but appear to be safe to use with VPP.

PCI ID Kernel Interface(s) Description
--
0000:90:00.0 enp144s0 VIC Ethernet NIC
0000:8f:00.0 enp143s0 VIC Ethernet NIC
0000:84:00.0 enp132s0f0,enp132s0f0d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:84:00.1 enp132s0f1,enp132s0f1d1 Ethernet Controller XL710 for 40GbE QSFP+
0000:08:00.1 enp8s0f1 I350 Gigabit Network Connection
0000:02:00.0 enp2s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:02:00.1 enp2s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.0 enp134s0f0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 enp134s0f1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to use any of these device(s) for VPP [y/N]? y
Would you like to use device 0000:90:00.0 for VPP [y/N]?
Would you like to use device 0000:8f:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.0 for VPP [y/N]?
Would you like to use device 0000:84:00.1 for VPP [y/N]?
Would you like to use device 0000:08:00.1 for VPP [y/N]?
Would you like to use device 0000:02:00.0 for VPP [y/N]?
Would you like to use device 0000:02:00.1 for VPP [y/N]?
Would you like to use device 0000:86:00.0 for VPP [y/N]? y
Would you like to use device 0000:86:00.1 for VPP [y/N]? y

These device(s) will be used by VPP.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Would you like to remove any of these device(s) [y/N]?

These device(s) will be used by VPP, please rerun this option if this is incorrect.

PCI ID Description
--
0000:86:00.0 82599ES 10-Gigabit SFI/SFP+ Network Connection
0000:86:00.1 82599ES 10-Gigabit SFI/SFP+ Network Connection

Your system has 32 core(s) and 2 Numa Nodes.
To begin, we suggest not reserving any cores for VPP or other processes.
Then to improve performance try reserving cores as needed.

How many core(s) do you want to reserve for processes other than VPP? [0-16][0]?
How many core(s) shall we reserve for VPP workers[0-4][0]? 2
Should we reserve 1 core for the VPP Main thread? [y/N]? y

How many active-open / tcp client sessions are expected [0-10000000][0]?
How many passive-open / tcp server sessions are expected [0-10000000][0]?

There currently 1024 2048 kB huge pages free.
Do you want to reconfigure the number of huge pages [y/N]? y

There currently a total of 1024 huge pages.
How many huge pages do you want [1024 - 19414][1024]? 8192

Command 3. Apply Full Configuration

After the configuration files have been examined we can apply the
configuration with option 3. Notice the default is NOT to change the
grub command line. If the option to change the grub command line is
selected a reboot will be required.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 3

We are now going to configure your system(s).

Are you sure you want to do this [Y/n]? y
These are the changes we will apply to
the huge page file (/etc/sysctl.d/80-vpp.conf).

1,2d0
< vm.nr_hugepages=1024
4,7c2,3
< vm.max_map_count=3096

> vm.nr_hugepages=8192
> vm.max_map_count=17408
8a5
> kernel.shmmax=17179869184
10,15d6
< kernel.shmmax=2147483648

Are you sure you want to apply these changes [Y/n]?
These are the changes we will apply to
the VPP startup file (/etc/vpp/startup.conf).

>
> main-core 8
> corelist-workers 9-10
>
> scheduler-policy fifo
> scheduler-priority 50
>
67,68c56,66
< # dpdk {

> dpdk {
>
> dev 0000:86:00.0 {
> num-rx-queues 2
> }
> dev 0000:86:00.1 {
> num-rx-queues 2
> }
> num-mbufs 25600
>
124c122
< # }

> }

Are you sure you want to apply these changes [Y/n]?

The configured grub cmdline looks like this:
GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=8,9-10 nohz_full=8,9-10 rcu_nocbs=8,9-10"

The current boot cmdline looks like this:
BOOT_IMAGE=/boot/vmlinuz-4.4.0-97-generic root=UUID=d760b82f-f37b-47e2-9815-db8d479a3557 ro

Do you want to keep the current boot cmdline [Y/n]?

Command 4. List/Install/Uninstall VPP

Notice when the basic system information was shown, VPP was not
installed.

VPP Service Status:
 Not Installed

==============================

We can now install FD.io VPP with option 4

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 4

There are no VPP packages on node localhost.
Do you want to install VPP [Y/n]? y
INFO:root: Local Command: ls /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: /etc/apt/sources.list.d/99fd.io.list.orig
INFO:root: Local Command: rm /etc/apt/sources.list.d/99fd.io.list
INFO:root: Local Command: echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./
" | sudo tee /etc/apt/sources.list.d/99fd.io.list
INFO:root: deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/ ./
.......

Command 5. Execute Basic tests

Set IPv4 Addresses

Once VPP is configured we can add some ip addresses to the configured
interfaces. Once this is done you should be able to ping the configured
addresses and VPP is ready to use. After this option, is run a script is
created in /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up for
Ubuntu and /usr/vpp/vpp-config/scripts/set_int_ipv4_and_up *for **Centos*.
This script can be used to configure the ip addresses in the future.

What would you like to do?

1) Show basic system information
2) Dry Run (Will save the configuration files in /usr/local/vpp/vpp-config/dryrun for inspection)
 and user input in /usr/local/vpp/vpp-config/configs/auto-config.yaml
3) Full configuration (WARNING: This will change the system configuration)
4) List/Install/Uninstall VPP.
5) Execute some basic tests.
9 or q) Quit

Command: 5

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 Not Set dn
TenGigabitEthernet86/0/1 Not Set dn

Would you like to keep this configuration [Y/n]? n
Would you like add address to interface TenGigabitEthernet86/0/0 [Y/n]?
Please enter the IPv4 Address [n.n.n.n/n]: 30.0.0.2/24
Would you like add address to interface TenGigabitEthernet86/0/1 [Y/n]? y
Please enter the IPv4 Address [n.n.n.n/n]: 40.0.0.2/24

A script as been created at /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up
This script can be run using the following:
vppctl exec /usr/local/vpp/vpp-config/scripts/set_int_ipv4_and_up

What would you like to do?

1) List/Create Simple IPv4 Setup
9 or q) Back to main menu.

Command: 1

These are the current interfaces with IP addresses:
TenGigabitEthernet86/0/0 30.0.0.2/24 up
TenGigabitEthernet86/0/1 40.0.0.2/24 up

Would you like to keep this configuration [Y/n]?

For Developers

Modifying the code is reasonable simple. Edit and debug the code from
the root directory. In order to do this, we need a script that will copy
or data files to the proper place. This is where they end up with pip
install.

On Ubuntu, the root directory is found by:

cd /usr/local/vpp/vpp-config

On Centos, the root directory is found by:

cd /usr/vpp/vpp-config

Script: Clean the Environment

Run this script to clean the environment.

./scripts/clean.sh

Note

This allows the developer to start from scratch.

Script: Copying Relevant Files

Run this script to copy the relevant files correctly:

./scripts/cp-data.sh

Steps to Run the Utility

These are the steps to run the utility in this environment.
The scripts are meant to be run from the root directory.

./scripts/clean.sh
./scripts/cp-data.sh
./vpp_config.py

When the utility is installed with pip the wrapper scripts/vpp-config is
written to /usr/local/bin. However, the starting point when debugging
this script locally is

 ./vpp_config.py

Run the utility by executing (from the root directory)

::

 ./vpp_config.py

The start point in the code is in vpp_config.py. Most of the work is
done in the files in ./vpplib

Uploading to PyPi

To upload this utility to PyPi, simply do the following:

Note

Currently, I have my own account. When we want everyone to contribute we will need to change that.

$ sudo -H bash
cd vpp_config
python setup.py sdist bdist_wheel
twine upload dist/*

 VPP Configuration Utility

VPP Configuration Utility

	Purpose of VPP Configuration Utility

	Installing the vpp-config utility
	Run as Root

	Using the vpp-config utility
	Configuration Tool Main Menu

	Target Files

	Configuring FD.io VPP with Default Values

	Command 1. Show System Information
	Before Configuration

	After Configuration

	Command 2. Dry Run

	Command 3. Apply Full Configuration

	Command 4. List/Install/Uninstall VPP

	Command 5. Execute Basic tests
	Set IPv4 Addresses

	For Developers
	Script: Clean the Environment

	Script: Copying Relevant Files

	Steps to Run the Utility

	Uploading to PyPi

_images/htmlBuild.png
[JON] [0 html
< s BPmiom =v % A a @ Q Search
html F
Eaicites Name ~ Date Modified size Kind
7 Applications » [_images Today at 3:24 PM -- Folder
&1 Pictures » [_sources Today at 2:54 PM -- Folder
@ ReES » [_static Today at 2:54 PM -- Folder
» [concepts Today at 2:54 PM -- Folder
(0 Desktop @ genindex.html Today at 3:24 PM 4KB HTML
ﬁj Andrew » [guides Today at 2:54 PM -- Folder
B index.html Today at 3:24 PM 15 KB HTML
M Documents o
objects.inv Today at 3:24 PM 730 bytes Document
0 Downloads » [reference Today at 2:54 PM -- Folder
@ AirDrop @ search.html Today at 3:24 PM 5KB HTML
@ searchindex.js Today at 3:24 PM 7 KB JavaScript
Devices » [setup Today at 2:54 PM -- Folder
Macintosh... » [tasks Today at 2:54 PM -- Folder

_images/importRTDManually.png
E Read the Docs I'] a-olechtchouk v

Project Details

To import a project, start by entering a few details about your repository. More advanced project options can be
configured if you select Edit advanced project options.

Name:

a-olechtchouk/vpp-docs

Repository URL:
https://github.com/a-olech

Hosted documentation repository URL

Repository type:
Git

<>

Edit advanced project options:

Next

_images/createNewPullReq.png
§ Create new pull request

_images/examplePullReq.png
Updated testfiles.rst

Write Preview M~ B i € > = EVE N @

This is an example comment. Here's a link to the Read the Docs page https://a-olechtchoukvpp-
docs.readthedocs.io/en/latest/

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

Allow edits from maintainers. Learn more Create pull request

_images/passedBuild.png
Projects >

a-olechtchouk/vpp-docs TEST

Recent Builds

Build Version: | | latest =

Passed version latest (html) 1 minute ago
Passed version latest (html) 19 minutes ago
Passed version latest (html) 21 minutes ago
Passed version latest (html) 32 minutes ago
Passed version latest (html) 32 minutes ago

_images/rtdWebpage.png
A vpp-firstcut
Docs » This is beta VPP Documentation it is not meant to be complete or accurate!!!!

© Edit on GitHub

Ale)
The Universal Dataplane This is beta VPP Documentation it is not meant to

be complete or accurate!'!!

Concepts

FD.io (Fast data - Input/Output) is a collection of several projects and libraries to amplify the
transformation to support flexible, programmable and composable services on a generic hardware
platform. FD.io offers the Software Defined Infrastructure developer community a landing site with
Setup multiple projects fostering innovations in software-based packet processing towards the creation of
Tasks high-throughput, low-latency and resource-efficient IO services suitable to many architectures

User Guides (x86, ARM, and PowerPC) and deployment environments (bare metal, VM, container).

Reference . . i §
A key component is the Vector Packet Processing (VPP) library donated by Cisco.

Support Read the Docs! « Concepts
o Setup
o Installing VPP Binaries from Packages
= Package Descriptions
= Vpp
= vpp-lib
= vpp-plugins
= vpp-dbg
= vpp-dev

Please help keep us sustainable by
allowing our Ethical Ads in your ad
blocker or go ad-free by subscribing.

Thank you! ¥

& Read the Docs

_images/importReadDocs.png
Y

Read the Docs I a-olechtchouk v

Import a Project

_images/issuePullReq.png
¥ a-olechtchouk / vpp-docs @uUnwatch~ 1 Y Star 0 Fork 5

forked from fdioDocs/vpp-docs

<> Code Pull requests 0 Projects 0 Wiki Insights Settings
This repository will be used for the VPP documentation project Edit
Add topics
D 15 commits ¥ 1 branch © 0 releases 22 3 contributors

Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ~

This branch is 5 commits ahead, 9 commits behind fdioDocs:master. 19 Pull request Compare

_images/usernameFork.png
¥ a-olechtchouk / vpp-docs @Unwatch~ | 1 S Star 0 Fork 5

forked from fdioDocs/vpp-docs

<> Code Pull requests 0 Projects 0 Wiki Insights Settings

This repository will be used for the VPP documentation project Edit

Add topics

_images/vhost-topo.png
System running
Linux

10002

System Running VPP

TenGigbEhermet5E/0/0

VP Bridge 100

| [Virualeermeofo/o -

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 FD.io VPP

 		
 Overview

 		
 What is VPP?

 		
 Packet Processing

 		
 Fast, Scalable and Deterministic

 		
 Developer Friendly

 		
 Extensible and Modular Design

 		
 Features

 		
 Performance

 		
 Overview

 		
 Packet Throughput Graphs

 		
 Trending Throughput Graphs

 		
 For More information on CSIT

 		
 Architectures and Operating Systems

 		
 Architectures

 		
 Operating Systems and Packaging

 		
 Getting Started Guides

 		
 Users

 		
 Installing VPP Binaries from Packages

 		
 FD.io VPP Configuration Utility

 		
 Writing VPP Documentation

 		
 How to Report an Issue

 		
 Developers

 		
 Building in VPP

 		
 Overview

 		
 Use Cases

 		
 FD.io VPP with Virtual Machines

 		
 Prerequisites

 		
 Topology

 		
 Creating The Virtual Interface

 		
 Creating the Virtual Machine

 		
 Bridge the Interfaces

 		
 Bring the Interfaces Up

 		
 Ping from the VM

 		
 Cleanup

 		
 The XML File

 		
 Using VPP as a Home Gateway

 		
 Configuration files

 		
 Patches

 		
 Using the temporal mac filter plugin

 		
 vSwitch/vRouter

 		
 FD.io VPP as a vSwitch/vRouter

 		
 Troubleshooting

 		
 CPU Load/Usage

 		
 Linux top/htop

 		
 VPP Memory Usage

 		
 VPP CPU Load

 		
 User Guides

 		
 Progressive VPP Tutorial

 		
 Introduction

 		
 Exercise: Setting up your environment

 		
 Vagrant Set Up

 		
 Exercise: Install VPP

 		
 Exercise: VPP basics

 		
 VPP command learned in this exercise

 		
 Action: Remove dpdk plugin

 		
 Action: Run VPP

 		
 Action: Send commands to VPP using vppctl

 		
 Action: Start a VPP shell using vppctl

 		
 Exercise: Create an interface

 		
 Exercise: Connecting two vpp instances

 		
 Exercise: Routing

 		
 Exercise: Switching

 		
 Source NAT

 		
 API User Guides

 		
 Downloading the jvpp jar

 		
 Reference

 		
 Command Line Reference

 		
 Interface Commands

 		
 Vhost User Commands

 		
 VPP with Containers

 		
 Overview

 		
 Creating your VM

 		
 Accessing your VM

 		
 Creating Containers

 		
 Container prerequisites

 		
 Routing two Containers

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/fd-io_red_white.png

_static/down-pressed.png

_static/down.png

_static/fdio_logo.png
io

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/VPP_App_as_a_vSwitch_x201.jpg
e

=l
=]

_images/VPP_custom_application_packet_processing_graph.280.jpg
‘Custom Application / Custom Packet
Processing Graph

_images/SNAT_Topology.jpg
vazroLoL

spisinojddn

vavroror

IsoyapsIoLddn

_images/Switching_Topology.jpg
hostvpptout

vppthost
101011724

host-vpp2vppt

l00p0:

_images/buildVerRTD.png
E Read the Docs I'] a-olechtchouk v

Projects >

a-olechtchouk/vpp-do